On the spectral theory of linear differential-algebraic equations with periodic coefficients

被引:0
作者
Bader Alshammari
Aaron Welters
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
来源
Analysis and Mathematical Physics | 2023年 / 13卷
关键词
Linear differential-algebraic equations; Periodic coefficients; Operator theory; Spectral theory; Electromagnetics; 1D photonic crystals; 34A09; 34L05; 47B25; 47A75; 78M22; 46N20; 47N20; 47B38; 47B93; 47N50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the spectral theory of linear differential-algebraic equations (DAEs) for periodic DAEs in canonical form, i.e., Jdfdt+Hf=λWf,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} J \frac{df}{dt}+Hf=\lambda Wf, \end{aligned}$$\end{document}where J is a constant skew-Hermitian n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix that is not invertible, both H=H(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=H(t)$$\end{document} and W=W(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=W(t)$$\end{document} are d-periodic Hermitian n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document}-matrices with Lebesgue measurable functions as entries, and W(t) is positive semidefinite and invertible for a.e. t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document} (i.e., Lebesgue almost everywhere). Under some additional hypotheses on H and W, called the local index-1 hypotheses, we study the maximal and the minimal operators L and L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document}, respectively, associated with the differential-algebraic operator L=W-1(Jddt+H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}=W^{-1}(J\frac{d}{dt}+H)$$\end{document}, both treated as an unbounded operators in a Hilbert space L2(R;W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}; W)$$\end{document} of weighted square-integrable vector-valued functions. We prove the following: (i) the minimal operator L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document} is a densely defined and closable operator; (ii) the maximal operator L is the closure of L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document}; (iii) L is a self-adjoint operator on L2(R;W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}; W)$$\end{document} with no eigenvalues of finite multiplicity, but may have eigenvalues of infinite multiplicity. Finally, we show that for 1D photonic crystals with passive lossless media, Maxwell’s equations for the electromagnetic fields become, under separation of variables, periodic DAEs in canonical form satisfying our hypotheses so that our spectral theory applies to them.
引用
收藏
相关论文
共 42 条
  • [1] Lamour R(1998)How Floquet theory applies to index 1 differential algebraic equations J. Math. Anal. Appl. 217 372-394
  • [2] März R(2000)Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations Int. J. Circuit Theory Appl. 28 163-185
  • [3] Winkler R(2003)Stability of periodic solutions of index-2 differential algebraic systems J. Math. Anal. Appl. 279 475-494
  • [4] Demir A(2006)Slow light in photonic crystals Waves Random Complex Media 16 293-382
  • [5] Lamour R(2013)Resonant electromagnetic scattering in anisotropic layered media J. Math. Phys. 54 103511-285
  • [6] März R(2016)Pathological scattering by a defect in a slow-light periodic layered medium J. Math. Phys. 57 022902-347
  • [7] Winkler R(1980)The spectrum of Hamilton’s operator with periodic coefficients Vestnik Leningrad Univ. Math. 12 280-30
  • [8] Figotin A(1990)An implicit canonical equation in Hilbert space Ukr. Math. J. 42 345-486
  • [9] Vitebskiy I(1989)Linear differential-algebraic equations in spaces of integrable functions J. Differ. Equ. 79 14-272
  • [10] Shipman SP(2007)Closedness and normal solvability of an operator generated by a degenerate linear differential equation with variable coefficients Nonlinear Oscillations 10 469-510