Control Problem for a Magneto-Micropolar Flow with Mixed Boundary Conditions for the Velocity Field

被引:0
作者
Exequiel Mallea-Zepeda
Elva Ortega-Torres
机构
[1] Universidad de Tarapacá,Departamento de Matemática
[2] Universidad Católica del Norte,Departamento de Matemáticas
来源
Journal of Dynamical and Control Systems | 2019年 / 25卷
关键词
Magneto-micropolar fluids; Boundary control problem; Optimality system; 35Q35; 76D03; 76D55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence and uniqueness of weak solutions of the stationary magneto-micropolar equations with mixed boundary conditions for velocity, including Navier slip condition. We study an optimal boundary control problem associated to weak solutions of these equations. By using the Lagrange multipliers method, we obtain first-order necessary conditions from which we derive an optimality system.
引用
收藏
页码:599 / 618
页数:19
相关论文
共 48 条
  • [1] Ahmadi G(1974)Universal stability of magneto-micropolar fluid motion Int J Engng Sci 12 657-63
  • [2] Shahinpoor M(1976)Universal stability of thermo-magneto-micropolar fluid motion Int J Engng Sci 15 853-9
  • [3] Ahmadi G(2004)Solvability of control problems for stationary equations of magnetohydrodynamics of a viscous fluids Siberian Math J 45 197-213
  • [4] Alekseev GV(2005)Control problems for stationary equations of the magnetohydrodynamics of a viscous heat-conducting fluids with mixed boundary conditions Comput Math Math Phys 45 2049-65
  • [5] Alekseev GV(2016)Solvability of an inhomogeneous boundary value problem for the stationary magnetohydrodynamic equations for a viscous incompressible fluid Diff Equ 52 739-48
  • [6] Brizitskii RV(2014)Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field Appl Math Lett 32 13-18
  • [7] Alekseev GV(1998)Magneto-micropolar fluid motion: existence of weak solution Rev Mat Univ Complutense de Madrid 11 443-60
  • [8] Alekseev GV(2005)A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations Nonlinear Anal 62 1289-316
  • [9] Brizitskii RV(2007)Optimal control of the stationary Navier-Stokes equations with mixed control-state constraints SIAM J Control Optim 46 604-29
  • [10] Boldrini JL(1977)A note on the existence and uniqueness of solutions of the micropolar fluid equations Int J Enging Sci 15 105-8