On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
Monatshefte für Mathematik | 2018年 / 186卷
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [31] Explicit Splitting Scheme for Maxwell’s Equations
    Mingalev I.V.
    Mingalev O.V.
    Akhmetov O.I.
    Suvorova Z.V.
    Mathematical Models and Computer Simulations, 2019, 11 (4) : 551 - 563
  • [32] Inverse Scattering Problem for the Maxwell's Equations
    Ramm, A. G.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 200 - 206
  • [33] Unconditionally stable integration of Maxwell's equations
    Verwer, J. G.
    Botchev, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 300 - 317
  • [34] On the solution of Maxwell's equations in polygonal domains
    Nkemzi, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (09) : 1053 - 1080
  • [35] On fictitious domain formulations for Maxwell's equations
    Dahmen, W
    Klint, T
    Urban, K
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2003, 3 (02) : 135 - 160
  • [36] A way to discover Maxwell's equations theoretically
    Rebilas, Krzysztof
    FOUNDATIONS OF PHYSICS LETTERS, 2006, 19 (04) : 337 - 351
  • [37] Maxwell's Equations in a Perturbed Periodic Structure
    Habib Ammari
    Gang Bao
    Advances in Computational Mathematics, 2002, 16 : 99 - 112
  • [38] On the Uniqueness of a Solution to Anisotropic Maxwell's Equations
    Buchukuri, T.
    Duduchava, R.
    Kapanadze, D.
    Natroshvili, D.
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 137 - +
  • [39] OPTIMIZED SCHWARZ METHODS FOR MAXWELL'S EQUATIONS
    Dolean, V.
    Gander, M. J.
    Gerardo-Giorda, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03): : 2193 - 2213
  • [40] Comment on 'Maxwell's equations and Lorentz transformations'
    Redzic, D., V
    EUROPEAN JOURNAL OF PHYSICS, 2022, 43 (06)