On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
Monatshefte für Mathematik | 2018年 / 186卷
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [21] Complex solutions to Maxwell’s equations
    Munshi S.
    Yang R.
    Complex Analysis and its Synergies, 2022, 8 (1)
  • [22] Braidings and Quantizations of Maxwell's Equations
    Huru, H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (03) : 250 - 259
  • [23] Maxwell's equations instantaneous Hamiltonian
    Kulyabov, D. S.
    Korolkova, A. V.
    Sevastianov, L. A.
    Eferina, E. G.
    Velieva, T. R.
    Zaryadov, I. S.
    SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337
  • [24] Maxwell's Equations, Fields or Potentials?
    Gersten, Alexander
    Moalem, Amnon
    11TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2019, 1239
  • [25] Maxwell's equations in the context of the Fock transformation and the magnetic monopole
    Takka, N.
    Bouda, A.
    Foughali, T.
    CANADIAN JOURNAL OF PHYSICS, 2017, 95 (10) : 987 - 992
  • [26] Reducing Maxwell's Equations to Gauss's Law
    Rebilas, Krzysztof
    PHYSICS ESSAYS, 2006, 19 (03) : 434 - 445
  • [27] SIGNAL MODEL BASED ON MAXWELL'S EQUATIONS
    Li, Bing
    Sun, Bing
    Chen, Jie
    Deng, De-xian
    Wang, Yan
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [28] Gravitoelectromagnetism and the integral formulation of Maxwell's equations
    Bini, D
    Germani, C
    Jantzen, RT
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (05): : 633 - 647
  • [29] Exact internal controllability of Maxwell's equations
    Zhou Q.
    Japan Journal of Industrial and Applied Mathematics, 1997, 14 (2) : 245 - 256
  • [30] An inverse cavity problem for Maxwell's equations
    Li, Peijun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) : 3209 - 3225