On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
Monatshefte für Mathematik | 2018年 / 186卷
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [1] On the universality of Maxwell's equations
    Sattinger, D. H.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 503 - 523
  • [2] Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law
    柳长茂
    Railway Engineering Science, 2005, (02) : 67 - 76
  • [3] Complex Maxwell's equations
    A.I.Arbab
    Chinese Physics B, 2013, 22 (03) : 115 - 120
  • [4] Quantized Maxwell's equations
    Arbab, A. I.
    OPTIK, 2017, 136 : 64 - 70
  • [5] Complex Maxwell's equations
    Arbab, A. I.
    CHINESE PHYSICS B, 2013, 22 (03)
  • [6] Maxwell's equations as mechanical law
    Nockel, Jens U.
    EUROPEAN JOURNAL OF PHYSICS, 2022, 43 (04)
  • [7] Maxwell's equations for structures with symmetries
    Weiland, T
    Zagorodnov, I
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (01) : 297 - 312
  • [8] A CONTROLLABILITY METHOD FOR MAXWELL’S EQUATIONS
    Chaumont-Frelet T.
    Grote M.J.
    Lanteri S.
    Tang A.J.H.
    SIAM Journal on Scientific Computing, 2022, 44 (06): : A3700 - A3727
  • [9] The solution of Maxwell's equations in multiphysics
    Bathe, Klaus-Juergen
    Zhang, Hou
    Yan, Yiguang
    COMPUTERS & STRUCTURES, 2014, 132 : 99 - 112
  • [10] On the semistatic limit for Maxwell's equations
    Jochmann, F
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 187 - 198