Similarity contrastive estimation for image and video soft contrastive self-supervised learning

被引:0
|
作者
Julien Denize
Jaonary Rabarisoa
Astrid Orcesi
Romain Hérault
机构
[1] Université Paris-Saclay,LITIS, INSA Rouen
[2] CEA,undefined
[3] List,undefined
[4] Normandie Université,undefined
来源
Machine Vision and Applications | 2023年 / 34卷
关键词
Deep learning; Self-supervised learning; Contrastive; Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks. Source code is available here: https://github.com/juliendenize/eztorch.
引用
收藏
相关论文
共 50 条
  • [21] Self-Supervised Graph Contrastive Learning for Mineral Prospectivity Mapping
    Meng, Zhenzhu
    Zuo, Renguang
    MATHEMATICAL GEOSCIENCES, 2025,
  • [22] Attentive spatial-temporal contrastive learning for self-supervised video representation
    Yang, Xingming
    Xiong, Sixuan
    Wu, Kewei
    Shan, Dongfeng
    Xie, Zhao
    IMAGE AND VISION COMPUTING, 2023, 137
  • [23] A self-supervised image aesthetic assessment combining masked image modeling and contrastive learning
    Yang, Shuai
    Wang, Zibei
    Wang, Guangao
    Ke, Yongzhen
    Qin, Fan
    Guo, Jing
    Chen, Liming
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [24] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [25] Malicious Traffic Identification with Self-Supervised Contrastive Learning
    Yang, Jin
    Jiang, Xinyun
    Liang, Gang
    Li, Siyu
    Ma, Zicheng
    SENSORS, 2023, 23 (16)
  • [26] Contrastive Self-Supervised Learning: A Survey on Different Architectures
    Khan, Adnan
    AlBarri, Sarah
    Manzoor, Muhammad Arslan
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 1 - 6
  • [27] CONTRASTIVE SELF-SUPERVISED LEARNING FOR WIRELESS POWER CONTROL
    Naderializadeh, Navid
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4965 - 4969
  • [28] SELF-SUPERVISED CONTRASTIVE LEARNING FOR CROSS-DOMAIN HYPERSPECTRAL IMAGE REPRESENTATION
    Lee, Hyungtae
    Kwon, Heesung
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3239 - 3243
  • [29] Self-supervised contrastive representation learning for semantic segmentation
    Liu B.
    Cai H.
    Wang Y.
    Chen X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (01): : 125 - 134
  • [30] Interactive Contrastive Learning for Self-Supervised Entity Alignment
    Zeng, Kaisheng
    Dong, Zhenhao
    Hou, Lei
    Cao, Yixin
    Hu, Minghao
    Yu, Jifan
    Lv, Xin
    Cao, Lei
    Wang, Xin
    Liu, Haozhuang
    Huang, Yi
    Feng, Junlan
    Wan, Jing
    Li, Juanzi
    Feng, Ling
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2465 - 2475