Similarity contrastive estimation for image and video soft contrastive self-supervised learning

被引:0
|
作者
Julien Denize
Jaonary Rabarisoa
Astrid Orcesi
Romain Hérault
机构
[1] Université Paris-Saclay,LITIS, INSA Rouen
[2] CEA,undefined
[3] List,undefined
[4] Normandie Université,undefined
来源
Machine Vision and Applications | 2023年 / 34卷
关键词
Deep learning; Self-supervised learning; Contrastive; Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks. Source code is available here: https://github.com/juliendenize/eztorch.
引用
收藏
相关论文
共 50 条
  • [1] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [2] Pathological Image Contrastive Self-supervised Learning
    Qin, Wenkang
    Jiang, Shan
    Luo, Lin
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 85 - 94
  • [3] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [4] Motion Sensitive Contrastive Learning for Self-supervised Video Representation
    Ni, Jingcheng
    Zhou, Nan
    Qin, Jie
    Wu, Qian
    Liu, Junqi
    Li, Boxun
    Huang, Di
    COMPUTER VISION - ECCV 2022, PT XXXV, 2022, 13695 : 457 - 474
  • [5] Vicsgaze: a gaze estimation method using self-supervised contrastive learning
    Gu, De
    Lv, Minghao
    Liu, Jianchu
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [6] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [7] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [8] Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive
    Wu, Lirong
    Lin, Haitao
    Tan, Cheng
    Gao, Zhangyang
    Li, Stan Z.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 4216 - 4235
  • [9] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [10] Contrastive Self-supervised Learning in Recommender Systems: A Survey
    Jing, Mengyuan
    Zhu, Yanmin
    Zang, Tianzi
    Wang, Ke
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)