Determination of the gluon condensate from data in the charm-quark region

被引:0
作者
C. A. Dominguez
L. A. Hernandez
K. Schilcher
机构
[1] University of Cape Town,Centre for Theoretical and Mathematical Physics and Department of Physics
[2] Johannes Gutenberg-Universität,PRISMA Cluster of Excellence, Institut für Physik
来源
Journal of High Energy Physics | / 2015卷
关键词
Sum Rules; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
The gluon condensate, αsπG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle \frac{\alpha_s}{\pi }{G}^2\right\rangle $$\end{document}, i.e. the leading order power correction in the operator product expansion of current correlators in QCD at short distances, is determined from e+e− annihilation data in the charm-quark region. This determination is based on finite energy QCD sum rules, weighted by a suitable integration kernel to (i) account for potential quark-hadron duality violations, (ii) enhance the contribution of the well known first two narrow resonances, the J/ψ and the ψ(2S), while quenching substantially the data region beyond, and (iii) reinforce the role of the gluon condensate in the sum rules. By using a kernel exhibiting a singularity at the origin, the gluon condensate enters the Cauchy residue at the pole through the low energy QCD expansion of the vector current correlator. These features allow for a reasonably precise determination of the condensate, i.e. αsπG2=0.037±0.015\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle \frac{\alpha_s}{\pi }{G}^2\right\rangle =0.037\pm 0.015 $$\end{document} GeV4.
引用
收藏
相关论文
共 156 条
[1]  
Shifman MA(1979)QCD and resonance physics. Theoretical foundations Nucl. Phys. B 147 385-undefined
[2]  
Vainshtein AI(2000)Is there evidence for dimension two corrections in QCD two point functions? Phys. Rev. D 61 114020-undefined
[3]  
Zakharov VI(2007)QCD vacuum condensates from τ -lepton decay data JHEP 01 093-undefined
[4]  
Dominguez CA(2007)QCD condensates of dimension D = 6 and D=8 from hadronic tau-decays Phys. Lett. B 650 179-undefined
[5]  
Schilcher K(2008)Determination of QCD condensates from τ -decay data Eur. Phys. J. C 55 237-undefined
[6]  
Dominguez CA(2015)Chiral sum rules and vacuum condensates from τ -lepton decay data JHEP 03 053-undefined
[7]  
Schilcher K(2012)Confronting electron-positron annihilation into hadrons with QCD: an operator product expansion analysis JHEP 01 039-undefined
[8]  
Almasy AA(2014)Model-independent determination of the gluoncondensate in four-dimensional SU(3) gauge theory Phys. Rev. Lett. 113 092001-undefined
[9]  
Schilcher K(2010)Renormalon subtraction from the average plaquette and the gluon condensate Phys. Rev. D 82 114021-undefined
[10]  
Spiesberger H(1999)Gluon condensate and beyond Int. J. Mod. Phys. A 14 4865-undefined