Extremely rich dynamical behaviors in a simple nonautonomous Jerk system with generalized nonlinearity : hyperchaos, intermittency, offset-boosting and multistability

被引:1
|
作者
Ngo Mouelas A. [1 ]
Fonzin Fozin T. [1 ]
Kengne R. [1 ]
Kengne J. [2 ]
Fotsin H.B. [1 ]
Essimbi B.Z. [3 ]
机构
[1] Unité de Recherche de Matière Condensée d’Electronique et de Traitement de Signal (UR-MACETS), Faculty of Sciences, University of Dschang, P.O. Box 69, Dschang
[2] Unité de Recherche d’Automatique et d’Informatique Appliquée (LAIA), IUT-FV de Bandjoun, University of Dschang, P.O. Box 134, Bandjoun
[3] Laboratoire d’Energie, Systèmes électriques et électroniques, Unité de Recherche et de Formation Doctorale en Physique et Applications, University of Yaoundé I, P.O. Box 812, Yaoundé
关键词
Experimental study; Hyperchaos; Intermittency; Multistability; Nonautonomous Jerk system; Offset boosting;
D O I
10.1007/s40435-019-00530-z
中图分类号
学科分类号
摘要
This paper investigates the extremely rich dynamical behaviors of the simple Jerk system as proposed by Volos et al. (Nonlinear Dyn 89(2):1047–1061, 2017) based on two main modifications: (i) introduction of a periodic sinusoidal external excitation in the system and (ii) generalization of the nonlinear function of the system in the form φk(x) = 0.5 (exp (kx) - exp (- x)) as recently proposed by Kengne group (Negou and Kengne in AEU Int J Electron Commun 90:1–19, 2018). These changes are in origin of the observed rich dynamical behaviors including hyperchaos, chaos, intermittency, offset boosting and coexistence of multiple attractors. All these interesting dynamical behaviors are highlighted using the common dynamical tools such as bifurcation diagrams, spectrum of the Lyapunov exponents, two parameters diagrams, phase portraits and Poincaré sections. To the best of the author’s knowledge, the addition of an external force in the class of Jerk systems is new and has not been discussed earlier (despite the huge amount of related research works) and thus represents an enriching contribution to the understanding of the dynamics of Jerk’s system. The captured laboratory measurements are in perfect agreement with the theoretical analysis. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:51 / 69
页数:18
相关论文
共 2 条
  • [1] A simple Hamiltonian conservative chaotic system with extreme multistability and offset-boosting
    Wang, Qiyu
    Yan, Shaohui
    Wang, Ertong
    Ren, Yu
    Sun, Xi
    NONLINEAR DYNAMICS, 2023, 111 (08) : 7819 - 7830
  • [2] A simple Hamiltonian conservative chaotic system with extreme multistability and offset-boosting
    Qiyu Wang
    Shaohui Yan
    Ertong Wang
    Yu Ren
    Xi Sun
    Nonlinear Dynamics, 2023, 111 : 7819 - 7830