DLCP2F: a DL-based cryptocurrency price prediction framework

被引:1
作者
Aljadani A. [1 ]
机构
[1] Department of Management, College of Business Administration in Yanbu, Taibah University, Al-Madinah Al-Munawarah
来源
Discover Artificial Intelligence | 2022年 / 2卷 / 01期
关键词
Bidirectional Long Short-Term Memory; Cryptocurrency; Deep learning; Gated Recurrent Unit; Recurrent Neural Network; Time series;
D O I
10.1007/s44163-022-00036-2
中图分类号
学科分类号
摘要
Cryptocurrencies are distributed digital currencies that have emerged as a consequence of financial technology advancement. In 2017, cryptocurrencies have shown a huge rise in their market capitalization and popularity. They are now employed in today’s financial systems as individual investors, corporate firms, and big institutions are heavily investing in them. However, this industry is less stable than traditional currency markets. It can be affected by several legal, sentimental, and technical factors, so it is highly volatile, dynamic, uncertain, and unpredictable, hence, accurate forecasting is essential. Recently, cryptocurrency price prediction becomes a trending research topic globally. Various machine and deep learning algorithms, e.g., Neural Networks (NN), Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) were utilized to analyze the factors influencing the prices of the cryptocurrencies and accordingly predict them. This paper suggests a five-phase framework for cryptocurrency price prediction based on two state-of-the-art deep learning architectures (i.e., BiLSTM and GRU). The current study uses three public real-time cryptocurrency datasets from “Yahoo Finance”. Bidirectional Long Short-Term Memory and Gated Recurrent Unit deep learning-based algorithms are used to forecast the prices of three popular cryptocurrencies (i.e., Bitcoin, Ethereum, and Cardano). The Grid Search approach is used for the hyperparameters optimization processes. Results indicate that GRU outperformed the BiLSTM algorithm for Bitcoin, Ethereum, and Cardano, respectively. The lowest RMSE for the GRU model was found to be 0.01711, 0.02662, and 0.00852 for Bitcoin, Ethereum, and Cardano, respectively. Experimental results proved the significant performance of the proposed framework that achieves the minimum MSE and RMSE values. © The Author(s) 2022.
引用
收藏
相关论文
共 55 条
  • [1] Patel M.M., Tanwar S., Gupta R., Kumar N., A deep learning-based cryptocurrency price prediction scheme for financial institutions, J Inf Security Appl, 55, (2020)
  • [2] Nakamoto S., Bitcoin: A peer-to-peer electronic cash system, Decentralized Business Review, (2008)
  • [3] Mukhopadhyay U., Skjellum A., Hambolu O., Oakley J., Yu L., Brooks R., A brief survey of cryptocurrency systems, 2016 14Th Annual Conference on Privacy, Security and Trust (PST), IEEE, 2016, pp. 745-752
  • [4] Rose C., Et al., The evolution of digital currencies: Bitcoin, a cryptocurrency causing a monetary revolution, Int Bus Econ Res J, 14, 4, pp. 617-622, (2015)
  • [5] Eyal I., Blockchain technology: transforming libertarian cryptocurrency dreams to finance and banking realities, Computer, 50, 9, pp. 38-49, (2017)
  • [6] Adams R., Kewell B., Parry G., Blockchain for good? digital ledger technology and sustainable development goals, Handbook of sustainability and social science research, pp. 127-140, (2018)
  • [7] Saad M., Choi J., Nyang D., Kim J., Mohaisen A., Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Syst J, 14, 1, pp. 321-332, (2019)
  • [8] Jang H., Lee J., An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain information, IEEE Access, 6, pp. 5427-5437, (2017)
  • [9] Number of Blockchain Wallet Users 2022/2023: Breakdowns, Timelines, and Predictions
  • [10] Blockchain.Com Wallets