Barycentric rational interpolation with asymptotically monitored poles

被引:0
作者
Richard Baltensperger
机构
[1] University of Applied Sciences of Western Switzerland,College of Engineering and Architecture of Fribourg
来源
Numerical Algorithms | 2011年 / 57卷
关键词
Interpolation; Rational interpolation; Exponential convergence; Monitoring poles; Primary 65D05; 41A05; 41A20; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for asymptotically monitoring poles to a rational interpolant written in barycentric form. Theoretical and numerical results are given to show the potential of the proposed interpolant.
引用
收藏
页码:67 / 81
页数:14
相关论文
共 41 条
[1]  
Schneider C(1986)Some new aspects of rational interpolation Math. Comput. 47 285-299
[2]  
Werner W(1988)Rational functions for guaranteed and experimentally well-conditioned global interpolation Comput. Math. Appl. 15 1-16
[3]  
Berrut J-P(1997)Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval Comput. Math. Appl. 33 77-86
[4]  
Berrut J-P(2005)Recent developments in barycentric rational interpolation. Trends and applications in constructive approximation Internat. Ser. Numer. Math. (ISNM) 151 27-51
[5]  
Mittelmann HD(2004)Barycentric lagrange interpolation SIAM Rev. 46 501-517
[6]  
Berrut J-P(2004)The numerical stability of barycentric Lagrange interpolation IMA J. Numer. Anal. 24 547-556
[7]  
Baltensperger R(1972)Lagrangian interpolation at the Chebyshev points Comput. J. 15 156-159
[8]  
Mittelmann HD(2004) = cos( SIAM J. Sci. Comput. 25 1743-1770
[9]  
Berrut J-P(1997)/ J. Comput. Appl. Math. 86 45-52
[10]  
Trefethen LN(2000)); some unnoted advantages Numer. Algorithms 23 315-328