Adaptive finite elements for a certain class of variational inequalities of second kind

被引:0
作者
D. Hage
N. Klein
F. T. Suttmeier
机构
[1] University Siegen,Department Mathematik
来源
Calcolo | 2011年 / 48卷
关键词
Bingham fluid; Friction problem; A posteriori error estimate; Variational inequality; Finite element method; Adaptivity; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we extend our studies on finite element Galerkin schemes for elliptic variational inequalities of first to the one of second kind. Especially we perform the corresponding a posteriori error analysis for a simple friction problem and a model flow of a Bingham fluid.
引用
收藏
页码:293 / 305
页数:12
相关论文
共 21 条
  • [1] Ainsworth M.(1997)A posteriori error estimation in finite element analysis Comput. Methods Appl. Mech. Eng. 142 1-88
  • [2] Oden J.T.(1987)A feedback finite element method with a posteriori error estimation, part 1 Comput. Methods Appl. Mech. Eng. 61 1-40
  • [3] Babuška I.(1985)Some a posteriori error estimators for elliptic partial differential equations Math. Comput. 44 283-301
  • [4] Miller A.D.(2000)An adaptive finite element discretisation for a simplified Signorini problem Calcolo 37 65-77
  • [5] Bank R.E.(2000)Weighted error estimates for finite element solutions of variational inequalities Computing 65 119-134
  • [6] Weiser A.(1999)Adaptive finite elements for elastic bodies in contact SIAM J. Sci. Comput. 20 1605-1626
  • [7] Blum H.(1983)Error estimate procedure in the finite element method and applications SIAM J. Numer. Anal. 20 485-509
  • [8] Suttmeier F.T.(1999)A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity Comput. Methods Appl. Mech. Eng. 176 333-361
  • [9] Blum H.(2001)General approach for a posteriori error estimates for finite element solutions of variational inequalities Comput. Mech. 27 317-323
  • [10] Suttmeier F.T.(2007)On concepts of PDE-software: the cellwise oriented approach in DEAL Int. Math. Forum 2 1-20