共 66 条
- [21] Salter AB(2018)Canonical causal diagrams to guide the treatment of missing data in epidemiologic studies Am J Epidemiol. 138 178-1657
- [22] Patton GC(2021)Noncollapsibility, confounding, and sparse-data bias. Part 1: The oddities of odds J Clin Epidemiol. 139 264-19
- [23] Coffey C(2021)Noncollapsibility, confounding, and sparse-data bias. Part 2: What should researchers make of persistent controversies about the odds ratio? J Clin Epidemiol. 39 1641-36
- [24] Carlin JB(2020)Propensity scores using missingness pattern information: a practical guide Stat Med. 28 3-undefined
- [25] Lewis G(2019)Propensity score analysis with partially observed covariates: How should multiple imputation be used? Stat Methods Med Res. 34 23-undefined
- [26] Pelosi AJ(2019)A comparison of different methods to handle missing data in the context of propensity score analysis Eur J Epidemiol. undefined undefined-undefined
- [27] Araya R(undefined)undefined undefined undefined undefined-undefined
- [28] Moffitt TE(undefined)undefined undefined undefined undefined-undefined
- [29] Silva PA(undefined)undefined undefined undefined undefined-undefined
- [30] White IR(undefined)undefined undefined undefined undefined-undefined