Should multiple imputation be stratified by exposure group when estimating causal effects via outcome regression in observational studies?

被引:0
作者
Jiaxin Zhang
S Ghazaleh Dashti
John B. Carlin
Katherine J. Lee
Margarita Moreno-Betancur
机构
[1] Clinical Epidemiology and Biostatistics Unit,
[2] Department of Paediatrics,undefined
[3] University of Melbourne,undefined
[4] Clinical Epidemiology and Biostatistics Unit,undefined
[5] Murdoch Children’s Research Institute,undefined
来源
BMC Medical Research Methodology | / 23卷
关键词
Causal inference; Multiple imputation; Outcome regression; Observational study; Missing data; Target trial;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 66 条
  • [21] Salter AB(2018)Canonical causal diagrams to guide the treatment of missing data in epidemiologic studies Am J Epidemiol. 138 178-1657
  • [22] Patton GC(2021)Noncollapsibility, confounding, and sparse-data bias. Part 1: The oddities of odds J Clin Epidemiol. 139 264-19
  • [23] Coffey C(2021)Noncollapsibility, confounding, and sparse-data bias. Part 2: What should researchers make of persistent controversies about the odds ratio? J Clin Epidemiol. 39 1641-36
  • [24] Carlin JB(2020)Propensity scores using missingness pattern information: a practical guide Stat Med. 28 3-undefined
  • [25] Lewis G(2019)Propensity score analysis with partially observed covariates: How should multiple imputation be used? Stat Methods Med Res. 34 23-undefined
  • [26] Pelosi AJ(2019)A comparison of different methods to handle missing data in the context of propensity score analysis Eur J Epidemiol. undefined undefined-undefined
  • [27] Araya R(undefined)undefined undefined undefined undefined-undefined
  • [28] Moffitt TE(undefined)undefined undefined undefined undefined-undefined
  • [29] Silva PA(undefined)undefined undefined undefined undefined-undefined
  • [30] White IR(undefined)undefined undefined undefined undefined-undefined