Should multiple imputation be stratified by exposure group when estimating causal effects via outcome regression in observational studies?

被引:0
作者
Jiaxin Zhang
S Ghazaleh Dashti
John B. Carlin
Katherine J. Lee
Margarita Moreno-Betancur
机构
[1] Clinical Epidemiology and Biostatistics Unit,
[2] Department of Paediatrics,undefined
[3] University of Melbourne,undefined
[4] Clinical Epidemiology and Biostatistics Unit,undefined
[5] Murdoch Children’s Research Institute,undefined
来源
BMC Medical Research Methodology | / 23卷
关键词
Causal inference; Multiple imputation; Outcome regression; Observational study; Missing data; Target trial;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 66 条
  • [1] Hernán MA(2016)Using big data to emulate a target trial when a randomized trial is not available Am J Epidemiol. 183 758-764
  • [2] Robins JM(1986)Identifiability, exchangeability, and epidemiological confounding Int J Epidemiol. 15 413-419
  • [3] Greenland S(2009)Identifiability, exchangeability and confounding revisited Epidemiol Perspect Innovations. 6 1-9
  • [4] Robins JM(2013)The table 2 fallacy: presenting and interpreting confounder and modifier coefficients Am J Epidemiol. 177 292-298
  • [5] Greenland S(1982)The relative effectiveness of procedures commonly used in multiple regression analysis for dealing with missing values Am Stat. 36 378-381
  • [6] Robins JM(2010)Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values Stat Med. 29 2920-2931
  • [7] Westreich D(1996)Multiple imputation after 18+ years J Am Stat Assoc. 91 473-489
  • [8] Greenland S(2012)Multiple imputation and its application Wiley 76 1049-1064
  • [9] Donner A(2006)Fully conditional specification in multivariate imputation J Stat Comput Simul. 27 2610-2626
  • [10] White IR(2018)Should multiple imputation be the method of choice for handling missing data in randomized trials? Stat Methods Med Res. 325 1195-1198