Double-diffractive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi$\end{document} meson production at the hadron colliders

被引:0
作者
V. A. Khoze
A. D. Martin
M. G. Ryskin
W. J. Stirling
机构
[1] University of Durham,Department of Physics and Institute for Particle Physics Phenomenology
[2] Petersburg Nuclear Physics Institute,Department of Mathematical Sciences
[3] University of Durham,undefined
关键词
Transverse Momentum; Hadron Collider; Production Cross Section; Transverse Energy; Meson Production;
D O I
10.1140/epjc/s2004-01857-6
中图分类号
学科分类号
摘要
The double-diffractive production of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi_c$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi_b$\end{document} mesons, with a rapidity gap on either side, is studied, using both the Regge formalism and the perturbative QCD approach. Due to the rather low scale, the exclusive double-diffractive process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$pp\to p + \chi + p$\end{document} is predicted to dominate, whereas the probability that the incoming protons dissociate is expected to be relatively small. We evaluate the corresponding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi$\end{document} production cross sections at the Tevatron and LHC energies. For the double-diffractive process with proton dissociation, it is possible to select events with large transverse momenta transferred through the rapidity gaps, by measuring the transverse energy, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_\perp$\end{document}, flows in the proton fragmentation regions. Then the large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_\perp$\end{document} provides a scale to justify the use of perturbative QCD, and to allow a spin-parity analysis of the centrally produced system to be performed, by studying the azimuthal angular correlations between the directions of the forward and backward \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_\perp$\end{document} flows. The central production of the new X(3872) charmonium state is considered.
引用
收藏
页码:211 / 220
页数:9
相关论文
共 38 条
[1]  
Robson undefined(1977)undefined Nucl. Phys. B 130 328-undefined
[2]  
Khoze undefined(2001)undefined Eur. Phys. J. C 19 477-undefined
[3]  
Khoze undefined(2002)undefined Eur. Phys. J. C 23 311-undefined
[4]  
Pumplin undefined(1993)undefined Phys. Rev. D 47 4820-undefined
[5]  
Yuan undefined(2001)undefined Phys. Lett. B 510 155-undefined
[6]  
Krämer undefined(2001)undefined Prog. Part. Nucl. Phys. 47 141-undefined
[7]  
Roeck undefined(2002)undefined Eur. Phys. J. C 25 391-undefined
[8]  
Khoze undefined(2000)undefined Eur. Phys. J. C 14 525-undefined
[9]  
Kaidalov undefined(2001)undefined Eur. Phys. J. C 21 521-undefined
[10]  
Khoze undefined(2000)undefined Eur. Phys. J. C 18 167-undefined