Multi-Bump Solutions for Nonlinear Choquard Equation with Potential Wells and a General Nonlinearity

被引:0
作者
Lun Guo
Tingxi Hu
机构
[1] Huazhong Agricultural University,College of Science
[2] Southwest University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
Nonlinear Choquard equation; nonlocal nonlinearities; multi-bump solutions; variational methods; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the existence and asymptotic behavior of multi-bump solutions for nonlinear Choquard equation with a general nonlinearity −Δu+(λa(x)+1)u=(1|x|α*F(u))f(u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u + (\lambda a(x) + 1)u = \left(\frac{1}{|x|^\alpha}* F(u)\right) f(u) \; in \; \mathbb{R}^N,$$\end{document} where N ≥ 3, 0 < α < min{N, 4}, λ is a positive parameter and the nonnegative potential function a(x) is continuous. Using variational methods, we prove that if the potential well int(a−1(0)) consists of k disjoint components, then there exist at least 2k − 1 multi-bump solutions. The asymptotic behavior of these solutions is also analyzed as λ → +∞.
引用
收藏
页码:316 / 340
页数:24
相关论文
共 50 条
[41]   Existence and Concentration of Solutions for a Nonlinear Choquard Equation [J].
Dengfeng Lü .
Mediterranean Journal of Mathematics, 2015, 12 :839-850
[42]   Multi-bump solutions for the magnetic Schr?dinger-Poisson system with critical growth [J].
Ji, Chao ;
Zhang, Yongde ;
Radulescu, Vicentiu D. .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (21) :1-30
[43]   Multi-bump solutions for a class of quasilinear problems involving variable exponents [J].
Claudianor O. Alves ;
Marcelo C. Ferreira .
Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 :1563-1593
[44]   Multi-bump solutions for a class of quasilinear problems involving variable exponents [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) :1563-1593
[45]   Local uniqueness of multi-bump solutions for singularly perturbed Kirchhoff problems [J].
Yu, Mingzhu ;
Shi, Hongxia .
APPLIED MATHEMATICS LETTERS, 2022, 124
[46]   MULTI-BUMP HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SUPERQUADRATIC POTENTIAL [J].
Alves, C. O. ;
Carriao, P. C. ;
Miyagaki, O. H. .
HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (03) :859-877
[47]   Sign-changing solutions for a fractional Choquard equation with power nonlinearity [J].
Zhao, Shunneng ;
Yu, Yuanyang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
[48]   Positive and sign changing solutions to a nonlinear Choquard equation [J].
Clapp, Monica ;
Salazar, Dora .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :1-15
[49]   Existence and multiplicity of multi-bump solutions for the double phase Kirchhoff problems with convolution term in RN [J].
Liang, Shuaishuai ;
Shi, Shaoyun .
ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) :85-126
[50]   Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. .
MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01) :35-60