Multi-Bump Solutions for Nonlinear Choquard Equation with Potential Wells and a General Nonlinearity

被引:0
作者
Lun Guo
Tingxi Hu
机构
[1] Huazhong Agricultural University,College of Science
[2] Southwest University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
Nonlinear Choquard equation; nonlocal nonlinearities; multi-bump solutions; variational methods; 35J20; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the existence and asymptotic behavior of multi-bump solutions for nonlinear Choquard equation with a general nonlinearity −Δu+(λa(x)+1)u=(1|x|α*F(u))f(u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta u + (\lambda a(x) + 1)u = \left(\frac{1}{|x|^\alpha}* F(u)\right) f(u) \; in \; \mathbb{R}^N,$$\end{document} where N ≥ 3, 0 < α < min{N, 4}, λ is a positive parameter and the nonnegative potential function a(x) is continuous. Using variational methods, we prove that if the potential well int(a−1(0)) consists of k disjoint components, then there exist at least 2k − 1 multi-bump solutions. The asymptotic behavior of these solutions is also analyzed as λ → +∞.
引用
收藏
页码:316 / 340
页数:24
相关论文
共 50 条
  • [31] On Nodal Solutions of the Nonlinear Choquard Equation
    Gui, Changfeng
    Guo, Hui
    [J]. ADVANCED NONLINEAR STUDIES, 2019, 19 (04) : 677 - 691
  • [32] Existence of multi-bump solutions for a system with critical exponent in RN
    Nie, Jianjun
    Ding, Yanheng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [33] MULTI-BUMP SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE PROBLEMS WITH CRITICAL GROWTH IN RN
    Liang, Sihua
    Zhang, Jihui
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) : 71 - 101
  • [34] Existence of multi-bump solutions for the Schrodinger-Poisson system
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [35] Multiple solutions to a magnetic nonlinear Choquard equation
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02): : 233 - 248
  • [36] Existence of Multi-bump Solutions for a Class of Quasilinear Schrodinger Equations in Involving Critical Growth
    Liang, Sihua
    Zhang, Jihui
    [J]. MILAN JOURNAL OF MATHEMATICS, 2015, 83 (01) : 55 - 90
  • [37] Multiple solutions to a magnetic nonlinear Choquard equation
    Silvia Cingolani
    Mónica Clapp
    Simone Secchi
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 233 - 248
  • [38] Multi-bump solutions for the magnetic Schr?dinger-Poisson system with critical growth
    Ji, Chao
    Zhang, Yongde
    Radulescu, Vicentiu D.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (21) : 1 - 30
  • [39] Existence and Concentration of Solutions for a Nonlinear Choquard Equation
    Dengfeng Lü
    [J]. Mediterranean Journal of Mathematics, 2015, 12 : 839 - 850
  • [40] Existence and Concentration of Solutions for a Nonlinear Choquard Equation
    Lu, Dengfeng
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 839 - 850