A low-rank spectral method for learning Markov models

被引:0
作者
Shujun Bi
Zhen Yin
Yihong Weng
机构
[1] South China University of Technology,Department of Mathematics
来源
Optimization Letters | 2023年 / 17卷
关键词
Low-rank Markov chain; Low-rank spectral estimator; Lipschitzian error bound; Statistical upper bound;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns with the problem of estimating the transition matrix of a low-rank discrete-state Markov model from its state-transition trajectories. We propose a low-rank spectral method via the best rank-r approximation of the spectral estimator based on the matrix elementwise lq(q≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_q (q\ge 1)$$\end{document} norm distance. Specifically, we establishing the Lipschitzian type error bound for the rank-constrained transition matrix set. Then, we prove a statistical upper bound for the estimation error of the proposed estimator. Numerical comparisons with the rank-constrained maximum likelihood estimator which computed by DC (difference of convex function) programming algorithm (Zhu et al. in Oper Res, 2021. https://doi.org/10.1287/opre.2021.2115) illustrate the merits of the proposed estimator in terms of the recoverability and the required computing time.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 55 条
  • [1] Azé D(2003)A survey on error bounds for lower semicontinuous functions Esaim Proc. 13 1-17
  • [2] Benson AR(2017)The spacey random walk: a stochastic process for higher-order data SIAM Rev. 59 321-345
  • [3] Gleich DF(2016)Error bounds for rank constrained optimization problems and applications Oper. Res. Lett. 44 336-341
  • [4] Lim L-H(1993)Weak sharp minima in mathematical programming SIAM J. Control Optim. 31 1340-1359
  • [5] Bi SJ(2021)Low-rank matrix recovery with composite optimization: good conditioning and rapid convergence Found. Comput. Math. 21 1505-1593
  • [6] Pan SH(2019)Spectral method and regularized MLE are both optimal for top- Ann. Stat. 47 2204-2235
  • [7] Burke JV(2020) ranking SIAM J. Matrix Anal. Appl. 41 244-278
  • [8] Ferris MC(2018)Adaptive low-nonnegative-rank approximation for state aggregation of markov chains Math. Program. 167 5-35
  • [9] Charisopoulos V(2012)Max-norm optimization for robust matrix recovery Math. Program. Comput. 6 281-325
  • [10] Chen Y(2014)A partial proximal point algorithm for nuclear norm regularized matrix least squares problems with polyhedral constraints Bernoulli 20 282-303