On those multiplicative subgroups of F2n∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{2^n}^*$$\end{document} which are Sidon sets and/or sum-free sets

被引:0
作者
Claude Carlet
Sihem Mesnager
机构
[1] University of Paris VIII,Department of Mathematics
[2] Sorbonne Paris Cité,University of Paris XIII, CNRS, UMR 7539 LAGA
[3] University of Bergen,Department of Informatics
[4] Telecom Paris,undefined
关键词
Sidon sets; Sum-free sets; APN exponents; APN functions; Symmetric cryptography;
D O I
10.1007/s10801-020-00988-7
中图分类号
学科分类号
摘要
We study those multiplicative subgroups of F2n∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_{2^n}^*$$\end{document} which are Sidon sets and/or sum-free sets in the group (F2n,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb F}_{2^n},+)$$\end{document}. These Sidon and sum-free sets play an important role relative to the exponents of APN power functions, as shown by a paper co-authored by the first author.
引用
收藏
页码:43 / 59
页数:16
相关论文
共 6 条
  • [1] Babai L(1985)Sidon sets in groups and induced subgraphs of Cayley graphs Europ. J. Combin. 6 101-114
  • [2] Sós VT(2005)Sum-free sets in Abelian groups Israel J. Math. 147 157-288
  • [3] Green B(1990)Analysis of Euclidean algorithms for polynomials over finite fields J. Symb. Comput. 9 429-455
  • [4] Ruzsa IZ(undefined)undefined undefined undefined undefined-undefined
  • [5] Ma K(undefined)undefined undefined undefined undefined-undefined
  • [6] von zur Gathen J(undefined)undefined undefined undefined undefined-undefined