Boundary Control for Optimal Mixing by Stokes Flows

被引:0
作者
Weiwei Hu
机构
[1] University of Minnesota,Institute for Mathematics and Its Applications
来源
Applied Mathematics & Optimization | 2018年 / 78卷
关键词
Optimal mixing; Unsteady stokes flow; Navier slip boundary conditions; Bilinear system; 35Q93; 37A25; 49J20; 49K20; 76B75; 76F25;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the optimal boundary control problem for mixing an inhomogeneous distribution of a passive scalar field in an unsteady Stokes flow. The problem is motivated by mixing the fluids within a cavity or vessel at low Reynolds numbers by moving the walls or stirring at the boundary. It is natural to consider the velocity field which is induced by a control input tangentially acting on the boundary of the domain through the Navier slip boundary conditions. Our main objective is to design an optimal Navier slip boundary control that optimizes mixing at a given final time. This essentially leads to a finite time optimal control problem of a bilinear system. In the current work, we consider a general open bounded and connected domain Ω⊂Rd,d=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{d}, d=2,3$$\end{document}. We employ the Sobolev norm for the dual space (H1(Ω))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H^{1}(\Omega ))'$$\end{document} of H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}( \Omega )$$\end{document} to quantify mixing of the scalar field in terms of the property of weak convergence. A rigorous proof of the existence of an optimal control is presented and the first-order necessary conditions for optimality are derived.
引用
收藏
页码:201 / 217
页数:16
相关论文
共 50 条
[11]   Compressible Navier-Stokes-Fourier flows at steady-state [J].
Consiglieri, Luisa .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02) :812-838
[12]   Identification of a boundary obstacle in a Stokes fluid with Dirichlet-Navier boundary conditions: External measurements [J].
Breton, Louis ;
Montoya, Cristhian ;
Casanova, Pedro Gonzalez ;
Estrada, Jesus Lopez .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[13]   On the optimal mixing problem of approximate Nash equilibria in bimatrix games [J].
Deng, Xiaotie ;
Li, Dongchen ;
Li, Hanyu .
THEORETICAL COMPUTER SCIENCE, 2025, 1031
[14]   Linkage Neighbors, Optimal Mixing and Forced Improvements in Genetic Algorithms [J].
Bosman, Peter A. N. ;
Thierens, Dirk .
PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, :585-592
[15]   Parameterless Gene-Pool Optimal Mixing Evolutionary Algorithms [J].
Dushatskiy, Arkadiy ;
Virgolin, Marco ;
Bouter, Anton ;
Thierens, Dirk ;
Bosman, Peter A. N. .
EVOLUTIONARY COMPUTATION, 2024, 32 (04) :371-397
[16]   Weighted Hilbert spaces for the stationary exterior Stokes problem with Navier slip boundary conditions [J].
Dhifaoui, Anis ;
Meslameni, Mohamed ;
Razafison, Ulrich .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) :1846-1871
[17]   Theoretical Perspective of Convergence Complexity of Evolutionary Algorithms Adopting Optimal Mixing [J].
Tung, Yu-Fan ;
Yu, Tian-Li .
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, :535-542
[18]   Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithms [J].
Ngoc Hoang Luong ;
La Poutre, Han ;
Bosman, Peter A. N. .
GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, :357-364
[19]   On transformations of degenerate optimal control problems [J].
Gurman, V. I. .
AUTOMATION AND REMOTE CONTROL, 2013, 74 (11) :1878-1882
[20]   On transformations of degenerate optimal control problems [J].
V. I. Gurman .
Automation and Remote Control, 2013, 74 :1878-1882