Biclustering multivariate discrete longitudinal data

被引:0
|
作者
M. Alfó
M. F. Marino
F. Martella
机构
[1] Sapienza,
[2] University of Rome,undefined
[3] University of Florence,undefined
来源
Statistics and Computing | 2024年 / 34卷
关键词
Finite mixtures; Model-based clustering; Three-way data; Generalized linear models; EM algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
A model-based biclustering method for multivariate discrete longitudinal data is proposed. We consider a finite mixture of generalized linear models to cluster units and, within each mixture component, we adopt a flexible and parsimonious parameterization of the component-specific canonical parameter to define subsets of variables (segments) sharing common dynamics over time. We develop an Expectation-Maximization-type algorithm for maximum likelihood estimation of model parameters. The performance of the proposed model is evaluated on a large scale simulation study, where we consider different choices for the sample the size, the number of measurement occasions, the number of components and segments. The proposal is applied to Italian crime data (font ISTAT) with the aim to detect areas sharing common longitudinal trajectories for specific subsets of crime types. The identification of such biclusters may potentially be helpful for policymakers to make decisions on safety.
引用
收藏
相关论文
共 50 条
  • [21] Longitudinal analysis methods for multivariate data
    Lin, Haiqun
    Holford, Theodore R.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (05) : 383 - 385
  • [22] A clustering algorithm for multivariate longitudinal data
    Bruckers, Liesbeth
    Molenberghs, Geert
    Drinkenburg, Pim
    Geys, Helena
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2016, 26 (04) : 725 - 741
  • [23] Boosted multivariate trees for longitudinal data
    Pande, Amol
    Li, Liang
    Rajeswaran, Jeevanantham
    Ehrlinger, John
    Kogalur, Udaya B.
    Blackstone, Eugene H.
    Ishwaran, Hemant
    MACHINE LEARNING, 2017, 106 (02) : 277 - 305
  • [24] Gene Expression Data Analysis Using a Novel Approach to Biclustering Combining Discrete and Continuous Data
    Christinat, Yann
    Wachmann, Bernd
    Zhang, Lei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2008, 5 (04) : 583 - 593
  • [25] Identifying longevity profiles from longitudinal data through factor analysis and biclustering
    Noronha, Marta D. M.
    Zarate, Luis E.
    INTELLIGENT DATA ANALYSIS, 2024, 28 (06) : 1555 - 1578
  • [26] The analysis of multivariate longitudinal data using multivariate marginal models
    Cho, Hyunkeun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 481 - 491
  • [27] MTBGD: Mutli Type Biclustering for Genomic Data Biclustering of Genomic Data
    Huda, Syeda Bintul
    Noureen, Nighat
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1113 - 1119
  • [28] Stability of exploratory multivariate data modeling in longitudinal data
    Haydar Sengul
    M Michael Barmada
    BMC Genetics, 4
  • [29] Stability of exploratory multivariate data modeling in longitudinal data
    Sengul, H
    Barmada, MM
    BMC GENETICS, 2003, 4 (Suppl 1)
  • [30] Joint models of multivariate longitudinal outcomes and discrete survival data with INLA: An application to credit repayment behaviour
    Medina-Olivares, Victor
    Lindgren, Finn
    Calabrese, Raffaella
    Crook, Jonathan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 310 (02) : 860 - 873