Reference isotherms for water vapor sorption on nanoporous carbon: results of an interlaboratory study

被引:0
作者
Huong Giang T. Nguyen
Blaza Toman
Roger D. van Zee
Carsten Prinz
Matthias Thommes
Riaz Ahmad
David Kiska
Jamie Salinger
Ian M. Walton
Krista S. Walton
Darren P. Broom
Michael J. Benham
Humera Ansari
Ronny Pini
Camille Petit
Jürgen Adolphs
Andreas Schreiber
Toshihiro Shigeoka
Yuko Konishi
Kazuyuki Nakai
Matthias Henninger
Thomas Petrzik
Can Kececi
Vladimir Martis
Thomas Paschke
Enzo Mangano
Stefano Brandani
机构
[1] National Institute of Standards and Technology,
[2] German Federal Institute for Materials Research and Testing,undefined
[3] Friedrich-Alexander University Erlangen-Nuremberg,undefined
[4] Anton Paar QuantaTec Inc.,undefined
[5] Georgia Institute of Technology,undefined
[6] Hiden Isochema Limited,undefined
[7] Imperial College London,undefined
[8] Microtrac Retsch GmbH,undefined
[9] MicrotracBEL,undefined
[10] ,undefined
[11] RWTH Aachen University,undefined
[12] Surface Measurement Systems,undefined
[13] TA Instruments,undefined
[14] University of Edinburgh,undefined
[15] Carbon8 Systems,undefined
来源
Adsorption | 2023年 / 29卷
关键词
BAM-P109; H; O; Interlaboratory study; Nanoporous carbon; Reference isotherm; VAMAS;
D O I
暂无
中图分类号
学科分类号
摘要
This paper reports the results of an international interlaboratory study sponsored by the Versailles Project on Advanced Materials and Standards (VAMAS) and led by the National Institute of Standards and Technology (NIST) on the measurement of water vapor sorption isotherms at 25 °C on a pelletized nanoporous carbon (BAM-P109, a certified reference material). Thirteen laboratories participated in the study and contributed nine pure water vapor isotherms and four relative humidity isotherms, using nitrogen as the carrier gas. From these data, reference isotherms, along with the 95% uncertainty interval (Uk=2), were determined and are reported in a tabular format.
引用
收藏
页码:113 / 124
页数:11
相关论文
共 110 条
  • [1] Benavente D(2021)Comparative analysis of water condensate porosity using mercury intrusion porosimetry and nitrogen and water adsorption techniques in porous building stones Constr. Build. Mater 288 123131-32
  • [2] Such-Basañez I(1989)Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis Z. Phys. Chem. 163 25-114
  • [3] Fernandez-Cortes A(1994)An automated controlled atmosphere microbalance for the measurement of moisture sorption Int. J. Pharm 103 103-720
  • [4] Pla C(2011)A vacuum microbalance technique for studies on the wettability of powders J. Pharm. Pharmacol. 38 713-636
  • [5] Cazorla-Amoros D(2021)Study of energy density of adsorption-based thermal energy storage system under different operating conditions for SAPO-34 Adsorption 27 629-3465
  • [6] Cañaveras JC(2015)Calibration facility for dew point in air up to 1 MPa Int. J. Thermophys. 36 3453-82
  • [7] Sanchez-Moral S(1979)Surface studies with the vacuum microbalance Prog. Surf. Sci. 9 45-10744
  • [8] Benham MJ(2012)Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents J. Am. Chem. Soc. 134 10741-1050
  • [9] Ross DK(1932)Moisture sorption by carbon black Ind. Eng. Chem. 24 1045-1703
  • [10] Bergren MS(2021)Adsorption-based atmospheric water harvesting Joule 5 1678-7482