Reilly-Type Inequalities for the First Eigenvalue of p-Laplacian of Submanifolds in Minkowski Spaces

被引:0
作者
Fanqi Zeng
Qun He
机构
[1] Tongji University,School of Mathematical Sciences
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
-Laplacian; eigenvalue; mean curvature; Minkowski space; Finsler submanifolds; 53C60; 53B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give an upper bound for the first eigenvalue of the p-Laplacian of Finsler submanifolds in Minkowski spaces. Our results extend those of Wu (Ann Glob Anal Geom 29:95–102, 2006), and Du and Mao (Front Math China 10:583–594, 2015).
引用
收藏
相关论文
共 20 条
  • [1] Du F(2015)Reilly-type inequalities for Front. Math. China 10 583-594
  • [2] Mao J(1992)-Laplacian on compact Riemannian manifolds Comment. Math. Helv. 67 167-181
  • [3] El Soufi A(2000)Une inégalité du type Reilly pour les sous-variétés de l’espace hyperbolique Commun. Math. Phys. 208 761-770
  • [4] Ilias S(2002)Second eigenvalue of Schrödinger operators and mean curvature Pac. J. Math. 206 93-112
  • [5] El Soufi A(2004)Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds Hokkaido Math. J. 33 319-339
  • [6] Ilias S(2006)Extrinsic upper bounds for the first eigenvalue of elliptic operators Chin. Ann. Math. 27A 663-674
  • [7] Grosjean JF(1988)On the mean curvature of Finsler submanifolds Math. Ann. 280 389-402
  • [8] Grosjean JF(2016)Extrinsic upper bounds for Mediterr. J. Math. 13 3907-3919
  • [9] He Q(1977)Optimal upper estimates for the first eigenvalue of a jacobi type operator in spherical and hyperbolical spaces Commun. Math. Helv. 52 525-533
  • [10] Shen Y(1998)On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space Math. Ann. 311 549-576