Langevin Dynamics with a Tilted Periodic Potential

被引:0
作者
Gioia Carinci
Stephan Luckhaus
机构
[1] University of Modena and Reggio Emilia,
[2] University of Leipzig,undefined
来源
Journal of Statistical Physics | 2013年 / 151卷
关键词
Langevin dynamics; Avalanche dynamics; Pathwise description; Stochastic differential equations; Dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale.
引用
收藏
页码:870 / 895
页数:25
相关论文
共 22 条
[11]  
Blaha P.(undefined)Motion in periodic potentials in the low-friction-limit; nonlinear response to an external force undefined undefined undefined-undefined
[12]  
Schwarz K.(undefined)undefined undefined undefined undefined-undefined
[13]  
Aroyo M.(undefined)undefined undefined undefined undefined-undefined
[14]  
Orobengoa D.(undefined)undefined undefined undefined undefined-undefined
[15]  
Etxebarria I.(undefined)undefined undefined undefined undefined-undefined
[16]  
Garcia A.(undefined)undefined undefined undefined undefined-undefined
[17]  
Perez-Mato J.M.(undefined)undefined undefined undefined undefined-undefined
[18]  
Ribeiro J.L.(undefined)undefined undefined undefined undefined-undefined
[19]  
Petricek V.(undefined)undefined undefined undefined undefined-undefined
[20]  
Aroyo M.I.(undefined)undefined undefined undefined undefined-undefined