Langevin Dynamics with a Tilted Periodic Potential

被引:0
作者
Gioia Carinci
Stephan Luckhaus
机构
[1] University of Modena and Reggio Emilia,
[2] University of Leipzig,undefined
来源
Journal of Statistical Physics | 2013年 / 151卷
关键词
Langevin dynamics; Avalanche dynamics; Pathwise description; Stochastic differential equations; Dynamical systems;
D O I
暂无
中图分类号
学科分类号
摘要
We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale.
引用
收藏
页码:870 / 895
页数:25
相关论文
共 22 条
[1]  
Berglund N.(2002)Pathwise description of dynamic pitchfork bifurcations with additive noise Probab. Theory Relat. Fields 122 341-388
[2]  
Gentz B.(2008)From ballistic to diffusive motion in periodic potentials J. Stat. Phys. 131 175-202
[3]  
Hairer M.(1940)Brownian motion in a field of force and the diffusion model of chemical reactions Physica 7 284-378
[4]  
Pavliotis G.A.(1970)On the supremum of a Gaussian process Sankhya A 32 369-L173
[5]  
Kramers H.A.(2008)Diffusive transport in periodic potentials: underdamped dynamics Fluct. Noise Lett. 8 L155-184
[6]  
Landau H.(2008)Multiple instabilities in Bi Phys. Rev. B 77 177-undefined
[7]  
Shepp L.A.(2012)Ti J. Phys. Condens. Matter 24 undefined-undefined
[8]  
Pavliotis G.A.(1979)O Z. Phys. B 35 undefined-undefined
[9]  
Vogiannou A.(undefined): a ferroelectric beyond the soft-mode paradigm undefined undefined undefined-undefined
[10]  
Perez-Mato J.M.(undefined)Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases undefined undefined undefined-undefined