On the divisibility properties concerning sums of binomial coefficients

被引:0
|
作者
Bing He
机构
[1] Northwest A&F University,Department of Applied Mathematics, College of Science
来源
The Ramanujan Journal | 2017年 / 43卷
关键词
Binomial sums; Divisibility; WZ method; Primary 13A05; 11A07; Secondary 05A10; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
For any integer n>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n> 1,$$\end{document} we prove 2n2nn|∑k=0n-1(3k+1)2kk3(-8)n-1-k,2n2nn|∑k=0n-1(6k+1)2kk3(-512)n-1-k,2n2nn|∑k=0n-1(42k+5)2kk34096n-1-k,2n2nn|∑k=0n-1(20k2+8k+1)2kk5(-4096)n-1-k.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(3k+1){2k\atopwithdelims ()k}^3(-8)^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(6k+1){2k\atopwithdelims ()k}^3(-512)^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(42k+5){2k\atopwithdelims ()k}^3 4096^{n-1-k},\\ 2n{2n\atopwithdelims ()n}&\bigg |\sum _{k=0}^{n-1}(20k^2+8k+1){2k\atopwithdelims ()k}^5(-4096)^{n-1-k}. \end{aligned}$$\end{document}The first three results confirm three divisibility properties on sums of binomial coefficients conjectured by Z.-W. Sun.
引用
收藏
页码:313 / 326
页数:13
相关论文
共 50 条