Emerging Newtonian potential in pure R2 gravity on a de Sitter background

被引:0
作者
Hoang Ky Nguyen
机构
[1] Babeş-Bolyai University,Department of Physics
来源
Journal of High Energy Physics | / 2023卷
关键词
Classical Theories of Gravity; de Sitter space; Scale and Conformal Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
In [27] Alvarez-Gaume et al. established that pure R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}2 theory propagates massless spin-2 graviton on a de Sitter (dS) background but not on a locally flat background. We build on this insight to derive a Newtonian limit for the theory. Unlike most previous works that linearized the metric around a locally flat background, we explicitly employ the dS background to start with. We directly solve the field equation of the action 2κ−1∫d4x−gR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left(2\kappa \right)}^{-1}\int {d}^4x\sqrt{-g}{\mathcal{R}}^2 $$\end{document} coupled with the stress-energy tensor of normal matter in the form Tμν = Mc2δ(r→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overrightarrow{r} $$\end{document})δμ0δν0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\delta}_{\mu}^0{\delta}_{\nu}^0 $$\end{document}. We obtain the following Schwarzschild-de Sitter metric ds2=−1−Λ3r2−κc248πΛMrc2dt2+1−Λ3r2−κc248πΛMr−1dr2+r2dΩ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d{s}^2=-\left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa {c}^2}{48\pi \Lambda}\frac{M}{r}\right){c}^2d{t}^2+{\left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa {c}^2}{48\pi \Lambda}\frac{M}{r}\right)}^{-1}d{r}^2+{r}^2d{\varOmega}^2 $$\end{document} which features a potential Vr=−κc496πΛMr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V(r)=-\frac{\kappa {c}^4}{96\pi \Lambda}\frac{M}{r} $$\end{document} with the correct Newtonian tail. The parameter Λ plays a dual role: (i) it sets the scalar curvature for the background dS metric, and (ii) it partakes in the Newtonian potential V(r). We reach two key findings. Firstly, the Newtonian limit only emerges owing to the de Sitter background. Most existing studies of the Newtonian limit in modified gravity chose to linearize the metric around a locally flat background. However, this is a false vacuum to start with for pure R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}2 gravity. These studies unknowingly omitted the information about Λ of the de Sitter background, hence incapable of attaining a Newtonian behavior in pure R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}2 gravity. Secondly, as Λ appears in V(r) in a singular manner, viz. V(r) ∝ Λ−1, the Newtonian limit for pure R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}2 gravity cannot be obtained by any perturbative approach treating Λ as a small parameter.
引用
收藏
相关论文
共 31 条
[1]  
Woodard RP(2015) ln Scholarpedia 10 32243-undefined
[2]  
Kehagias A(2015)undefined JHEP 05 143-undefined
[3]  
Kounnas C(2018)undefined Eur. Phys. J. C 78 794-undefined
[4]  
Lüst D(1978)undefined Gen. Rel. Grav. 9 353-undefined
[5]  
Riotto A(2018)undefined Eur. Phys. J. Plus 133 408-undefined
[6]  
Alvarez E(2017)undefined Int. J. Mod. Phys. D 26 1750117-undefined
[7]  
Anero J(2023)undefined Eur. Phys. J. C 83 626-undefined
[8]  
Gonzalez-Martin S(2016)undefined Fortsch. Phys. 64 176-undefined
[9]  
Santos-Garcia R(2008)undefined Ukr. J. Phys. 53 737-undefined
[10]  
Stelle KS(2011)undefined Phys. Rept. 509 167-undefined