In [27] Alvarez-Gaume et al. established that pure R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{R} $$\end{document}2 theory propagates massless spin-2 graviton on a de Sitter (dS) background but not on a locally flat background. We build on this insight to derive a Newtonian limit for the theory. Unlike most previous works that linearized the metric around a locally flat background, we explicitly employ the dS background to start with. We directly solve the field equation of the action 2κ−1∫d4x−gR2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\left(2\kappa \right)}^{-1}\int {d}^4x\sqrt{-g}{\mathcal{R}}^2 $$\end{document} coupled with the stress-energy tensor of normal matter in the form Tμν = Mc2δ(r→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overrightarrow{r} $$\end{document})δμ0δν0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\delta}_{\mu}^0{\delta}_{\nu}^0 $$\end{document}. We obtain the following Schwarzschild-de Sitter metric ds2=−1−Λ3r2−κc248πΛMrc2dt2+1−Λ3r2−κc248πΛMr−1dr2+r2dΩ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ d{s}^2=-\left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa {c}^2}{48\pi \Lambda}\frac{M}{r}\right){c}^2d{t}^2+{\left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa {c}^2}{48\pi \Lambda}\frac{M}{r}\right)}^{-1}d{r}^2+{r}^2d{\varOmega}^2 $$\end{document} which features a potential Vr=−κc496πΛMr\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ V(r)=-\frac{\kappa {c}^4}{96\pi \Lambda}\frac{M}{r} $$\end{document} with the correct Newtonian tail. The parameter Λ plays a dual role: (i) it sets the scalar curvature for the background dS metric, and (ii) it partakes in the Newtonian potential V(r). We reach two key findings. Firstly, the Newtonian limit only emerges owing to the de Sitter background. Most existing studies of the Newtonian limit in modified gravity chose to linearize the metric around a locally flat background. However, this is a false vacuum to start with for pure R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{R} $$\end{document}2 gravity. These studies unknowingly omitted the information about Λ of the de Sitter background, hence incapable of attaining a Newtonian behavior in pure R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{R} $$\end{document}2 gravity. Secondly, as Λ appears in V(r) in a singular manner, viz. V(r) ∝ Λ−1, the Newtonian limit for pure R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{R} $$\end{document}2 gravity cannot be obtained by any perturbative approach treating Λ as a small parameter.