Order parameter quantum fluctuations in a two-dimensional system of mesoscopic Josephson junctions

被引:0
作者
A. I. Belousov
S. A. Verzakov
Yu. E. Lozovik
机构
[1] Russian Academy of Sciences,Institute of Spectroscopy
来源
Journal of Experimental and Theoretical Physics | 1998年 / 86卷
关键词
Hubbard Model; Superconducting State; Quantum Fluctuation; Parameter Modulus; Relative Fluctuation;
D O I
暂无
中图分类号
学科分类号
摘要
The boson lattice Hubbard model is used to study the role of quantum fluctuations of the phase and local density of the superfluid component in establishing a global superconducting state for a system of mesoscopic Josephson junctions or grains. The quantum Monte Carlo method is used to calculate the density of the superfluid component and fluctuations in the number of particles at sites of the two-dimensional lattice for various average site occupation numbers n0 (i.e., number of Cooper pairs per grain). For a system of strongly interacting bosons, the phase boundary of the ordered superconducting state lies above the corresponding boundary for its quasiclassical limit—the quantum XY-model—and approaches the latter as n0 increases. When the boson interaction is weak in the boson Hubbard model (i.e., the quantum fluctuations of the phase are small), the relative fluctuations of the order parameter modulus are significant when n0<10, while quantum fluctuations in the phase are significant when n0<8; this determines the region of mesoscopic behavior of the system. Comparison of the results of numerical modeling with theoretical calculations show that mean-field theory yields a qualitatively correct estimate of the difference between the phase diagrams of the quantum XY-model and the Hubbard model. For a quantitative estimate of this difference the free energy and thermodynamic averages of the Hubbard model are expanded in powers of 1/n0 using the method of functional integration.
引用
收藏
页码:146 / 155
页数:9
相关论文
共 49 条
[1]  
Imry Y.(1994)undefined Solid State Commun. 92 83-undefined
[2]  
Sivan U.(1996)undefined JETP Lett. 63 1018-undefined
[3]  
Andreev A. F.(1988)undefined Phys. Rev. Lett. 61 1950-undefined
[4]  
Chan M. H. W.(1992)undefined Phys. Scr. 42 159-undefined
[5]  
Blum K. I.(1992)undefined Appl. Phys. A 54 100-undefined
[6]  
Reppy J. D.(1991)undefined Phys. Rev. B 44 6883-undefined
[7]  
Bruder C.(1991)undefined Phys. Rev. Lett. 67 2703-undefined
[8]  
Fazio R.(1996)undefined JETP Lett. 64 99-undefined
[9]  
Dobryakov A. L.(1988)undefined Phys. Rev. Lett. 60 208-undefined
[10]  
Lozovik Yu. E.(1983)undefined Phys. Rev. B 23 5762-undefined