Subexponential-Time Algorithms for Maximum Independent Set in Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document}-Free and Broom-Free Graphs

被引:0
作者
Gábor Bacsó
Daniel Lokshtanov
Dániel Marx
Marcin Pilipczuk
Zsolt Tuza
Erik Jan van Leeuwen
机构
[1] Hungarian Academy of Sciences,Institute for Computer Science and Control
[2] University of Bergen,Department of Informatics
[3] University of Warsaw,Institute of Informatics
[4] Alfréd Rényi Institute of Mathematics,Department of Computer Science and Systems Technology
[5] University of Pannonia,Department of Information and Computing Sciences
[6] Utrecht University,undefined
关键词
Independent set; Subexponential algorithms; Approximation; Scattered set; -free graphs;
D O I
10.1007/s00453-018-0479-5
中图分类号
学科分类号
摘要
In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum Independent Set problem on Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document}-free graphs, that is, on graphs not containing any induced path on t vertices. So far, polynomial-time algorithms are known only for t≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\le 5$$\end{document} (Lokshtanov et al., in: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA, January 5–7, 2014, pp 570–581, 2014), and an algorithm for t=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=6$$\end{document} announced recently (Grzesik et al. in Polynomial-time algorithm for maximum weight independent set on P6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P}_6$$\end{document}-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of subexponential-time algorithms for the problem: we show that for any t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 1$$\end{document}, there is an algorithm for Maximum Independent Set on Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document}-free graphs whose running time is subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable in 2O(tnlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(\sqrt{tn \log n})}$$\end{document} time on Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document}-free graphs. For approximation of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the generalization of Maximum Independent Set where the vertices of the solution are required to be at distance at least d from each other. We give a complete characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential in the size of the input (that is, in the number of vertices plus the number of edges):If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m edges can be solved in time 2O(|V(H)|n+mlog(n+m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(|V(H)|\sqrt{n+m}\log (n+m))}$$\end{document}, even if d is part of the input.Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{o(n+m)}$$\end{document}-time algorithm for d-Scattered Set for any fixed d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} on H-free graphs with n-vertices and m-edges.
引用
收藏
页码:421 / 438
页数:17
相关论文
共 32 条
  • [1] Agnarsson G(2003)Powers of geometric intersection graphs and dispersion algorithms Discrete Appl. Math. 132 3-16
  • [2] Damaschke P(2004)Polynomial algorithm for finding the largest independent sets in graphs without forks Discrete Appl. Math. 135 3-16
  • [3] Halldórsson MM(1996)Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles) Discrete Appl. Math. 71 41-53
  • [4] Alekseev VE(2017)A subexponential-time algorithm for the maximum independent set problem in Discrete Appl. Math. 231 113-118
  • [5] Bafna V(2014)-free graphs J. Comb. Optim. 27 88-99
  • [6] Narayanan B(1987)Distance- Zastowania Matematyki Appl. Math. XIX 413-441
  • [7] Ravi R(2001) independent set problems for bipartite and chordal graphs J. Comput. Syst. Sci. 63 512-530
  • [8] Brause C(2011)Problems from the world surrounding perfect graphs Bull. EATCS 105 41-72
  • [9] Eto H(2008)Which problems have strongly exponential complexity? J. Discrete Algorithms 6 595-604
  • [10] Guo F(2005)Lower bounds based on the exponential time hypothesis Discrete Appl. Math. 146 74-80