Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent

被引:0
|
作者
Shaoxiong Chen
Yue Li
Zhipeng Yang
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Fractional Choquard equation; Ground state; Lusternik–Schnirelmann theory; 35P15; 35P30; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In present paper, we study the fractional Choquard equation ε2s(-Δ)su+V(x)u=εμ-N1|x|μ∗F(u)f(u)+|u|2s∗-2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varepsilon ^{2s}(-\Delta )^s u+V(x)u=\varepsilon ^{\mu -N}\left( \frac{1}{|x|^\mu }*F(u)\right) f(u)+|u|^{2^*_s-2}u \end{aligned}$$\end{document}where ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} is a parameter, s∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1),$$\end{document}N>2s,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s,$$\end{document}2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s=\frac{2N}{N-2s}$$\end{document} and 0<μ<min{2s,N-2s}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu <\min \{2s,N-2s\}$$\end{document}. Under suitable assumption on V and f, we prove this problem has a nontrivial nonnegative ground state solution. Moreover, we relate the number of nontrivial nonnegative solutions with the topology of the set where the potential attains its minimum values and their’s concentration behavior.
引用
收藏
相关论文
共 50 条