Ground State Solution for a Kirchhoff Problem with Exponential Critical Growth

被引:0
作者
Giovany M. Figueiredo
Uberlandio B. Severo
机构
[1] Universidade Federal do Pará,Faculdade de Matemática
[2] Universidade Federal do Paraíba,Departamento de Matemática
来源
Milan Journal of Mathematics | 2016年 / 84卷
关键词
Kirchhoff problem; exponential critical growth; ground state solution; 35J20; 35J25; 35J60; 35Q60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence of a positive ground state solution for a Kirchhoff problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} involving critical exponential growth, that is, the nonlinearity behaves like exp(α0s2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${exp(\alpha_0s^2)}$$\end{document} as |s|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|s| \rightarrow \infty}$$\end{document}, for some α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_0 > 0}$$\end{document}. In order to obtain our existence result we used minimax techniques combined with the Trudinger-Moser inequality.
引用
收藏
页码:23 / 39
页数:16
相关论文
共 34 条
[11]  
Cheng B.(2012)Existence of positive solution for a Kirchhoff problem type with critical growth via truncation argument J. Differential Equations 253 2285-201
[12]  
de Figueiredo D.G.(1985)Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth I, Rev. Mat. Iberoamericana 1 145-5038
[13]  
Miyagaki O.H.(2012)Existence of a positive solution to Kirchhoff type problems without compactness conditions Nonlinear Anal. 75 5032-1092
[14]  
Ruf B.(1971)The concentration-compactness principle in the calculus of variations. The limit case Ind. Univ. Math. J. 20 1077-484
[15]  
de Figueiredo D.G.(1967)Multiple nontrivial solutions to a p-Kirchhoff equation J. Math. Mech. 17 473-2351
[16]  
Miyagaki O.H.(2012)A sharp form of an inequality by N. Trudinger J. Differential Equations 253 2314-undefined
[17]  
Ruf B.(undefined)On the imbedding into Orlicz spaces and some applications undefined undefined undefined-undefined
[18]  
He X.M.(undefined)Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth undefined undefined undefined-undefined
[19]  
Zou W.M.(undefined)undefined undefined undefined undefined-undefined
[20]  
Figueiredo G.M.(undefined)undefined undefined undefined undefined-undefined