Ground State Solution for a Kirchhoff Problem with Exponential Critical Growth

被引:0
作者
Giovany M. Figueiredo
Uberlandio B. Severo
机构
[1] Universidade Federal do Pará,Faculdade de Matemática
[2] Universidade Federal do Paraíba,Departamento de Matemática
来源
Milan Journal of Mathematics | 2016年 / 84卷
关键词
Kirchhoff problem; exponential critical growth; ground state solution; 35J20; 35J25; 35J60; 35Q60;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence of a positive ground state solution for a Kirchhoff problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} involving critical exponential growth, that is, the nonlinearity behaves like exp(α0s2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${exp(\alpha_0s^2)}$$\end{document} as |s|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|s| \rightarrow \infty}$$\end{document}, for some α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_0 > 0}$$\end{document}. In order to obtain our existence result we used minimax techniques combined with the Trudinger-Moser inequality.
引用
收藏
页码:23 / 39
页数:16
相关论文
共 34 条
[1]  
Alves C.O.(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
[2]  
Corrêa F.J.S.A.(2001)On existence of solutions for a class of problem involving a nonlinear operator Comm. Appl. Nonlinear Anal. 8 43-56
[3]  
Ma T.F.(2010)On a class of nonlocal elliptic problems with critical growth Differ. Equ. Appl. 2 409-417
[4]  
Alves C.O.(1973)Dual variational methods in critical point theory and apllications J. Functional Analysis 14 349-381
[5]  
Corrêa F.J.S.A.(2012)New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems J. Math. Anal. Appl. 394 488-495
[6]  
Alves C.O.(1995)Elliptic equations in Calc. Var. 3 139-153
[7]  
Corrêa F.J.S.A.(1996) with nonlinearities in the critical growth range Calc. Var. 4 203-1414
[8]  
Figueiredo G.M.(2009)Corrigendum: ”Elliptic equations in Nonlinear Anal. 70 1407-713
[9]  
Ambrosetti A.(2013) with nonlinearities in the critical growth range” JMAA 401 706-868
[10]  
Rabinowitz P.H.(2012)Infinitely many positive solutions for Kirchhoff-type problems Differential Integral Equations 25 853-2294