Quantile regression with interval-censored data in questionnaire-based studies

被引:0
|
作者
Angel G. Angelov
Magnus Ekström
Klarizze Puzon
Agustin Arcenas
Bengt Kriström
机构
[1] Umeå University,Department of Statistics,Umeå School of Business, Economics and Statistics
[2] Sofia University St. Kliment Ohridski,Department of Probability, Operations Research and Statistics, Faculty of Mathematics and Informatics
[3] Swedish University of Agricultural Sciences,Department of Forest Resource Management
[4] United Nations University World Institute for Development Economics Research,School of Economics
[5] University of the Philippines,Department of Forest Economics
[6] Diliman,undefined
[7] Swedish University of Agricultural Sciences,undefined
来源
Computational Statistics | 2024年 / 39卷
关键词
Interval-censored data; Dependent censoring; Self-selected interval; Quantile regression; Estimating equation;
D O I
暂无
中图分类号
学科分类号
摘要
Interval-censored data can arise in questionnaire-based studies when the respondent gives an answer in the form of an interval without having pre-specified ranges. Such data are called self-selected interval data. In this case, the assumption of independent censoring is not fulfilled, and therefore the ordinary methods for interval-censored data are not suitable. This paper explores a quantile regression model for self-selected interval data and suggests an estimator based on estimating equations. The consistency of the estimator is shown. Bootstrap procedures for constructing confidence intervals are considered. A simulation study indicates satisfactory performance of the proposed methods. An application to data concerning price estimates is presented.
引用
收藏
页码:583 / 603
页数:20
相关论文
共 50 条
  • [1] Quantile regression with interval-censored data in questionnaire-based studies
    Angelov, Angel G.
    Ekstrom, Magnus
    Puzon, Klarizze
    Arcenas, Agustin
    Kristrom, Bengt
    COMPUTATIONAL STATISTICS, 2024, 39 (02) : 583 - 603
  • [2] A quantile regression estimator for interval-censored data
    Frumento, Paolo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 81 - 96
  • [3] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025, 34 (01) : 187 - 198
  • [4] Quantile regression model for interval-censored data with competing risks
    Ramli, Amirah Afiqah Binti Che
    Kim, Yang-Jin
    JOURNAL OF APPLIED STATISTICS, 2025,
  • [5] REGRESSION WITH INTERVAL-CENSORED DATA
    RABINOWITZ, D
    TSIATIS, A
    ARAGON, J
    BIOMETRIKA, 1995, 82 (03) : 501 - 513
  • [6] Inverse-Weighted Quantile Regression With Partially Interval-Censored Data
    Kim, Yeji
    Choi, Taehwa
    Park, Seohyeon
    Choi, Sangbum
    Bandyopadhyay, Dipankar
    BIOMETRICAL JOURNAL, 2024, 66 (08)
  • [7] Nonparametric Regression with Interval-Censored Data
    Wen Li DENG
    Zu Kang ZHENG
    Ri Quan ZHANG
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (08) : 1422 - 1434
  • [9] Nonparametric Regression with Interval-Censored Data
    Deng, Wen Li
    Zheng, Zu Kang
    Zhang, Ri Quan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1422 - 1434
  • [10] Nonparametric regression with interval-censored data
    Wen Li Deng
    Zu Kang Zheng
    Ri Quan Zhang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1422 - 1434