On a question of Erdös and Graham

被引:0
作者
I. E. Shparlinski
机构
[1] Department of Computing,
[2] Macquarie University,undefined
[3] Sydney,undefined
[4] NSW 2109,undefined
[5] Australia¶ email: igor@ics.mq.edu.au,undefined
来源
Archiv der Mathematik | 2002年 / 78卷
关键词
Positive Answer; Distinct Integer;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \varepsilon > 0 $\end{document} there is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ k (\varepsilon) $\end{document} such that for any prime p and any integer c there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ k \leqq k(\varepsilon) $\end{document} pairwise distinct integers xi with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k $\end{document}, and such that¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). $\end{document}¶¶ This gives a positive answer to a question of Erdös and Graham.
引用
收藏
页码:445 / 448
页数:3
相关论文
empty
未找到相关数据