New low-order mixed finite element methods for linear elasticity
被引:0
|
作者:
Xuehai Huang
论文数: 0引用数: 0
h-index: 0
机构:Shanghai University of Finance and Economics,School of Mathematics
Xuehai Huang
Chao Zhang
论文数: 0引用数: 0
h-index: 0
机构:Shanghai University of Finance and Economics,School of Mathematics
Chao Zhang
Yaqian Zhou
论文数: 0引用数: 0
h-index: 0
机构:Shanghai University of Finance and Economics,School of Mathematics
Yaqian Zhou
Yangxing Zhu
论文数: 0引用数: 0
h-index: 0
机构:Shanghai University of Finance and Economics,School of Mathematics
Yangxing Zhu
机构:
[1] Shanghai University of Finance and Economics,School of Mathematics
[2] Shanghai University of Finance and Economics,Network and Information Technology Center
来源:
Advances in Computational Mathematics
|
2024年
/
50卷
关键词:
Finite element elasticity complex;
Low-order finite elements for symmetric tensors;
Mixed finite element method;
Linear elasticity problem;
Error analysis;
58J10;
65N12;
65N22;
65N30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
New low-order H(div)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${H}({{\text {div}}})$$\end{document}-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the (d+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(d+1)}$$\end{document}-order normal-normal face bubble space. The reduced counterpart has only d(d+1)2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d(d+1)}^{{2}}$$\end{document} degrees of freedom. Basis functions are explicitly given in terms of barycentric coordinates. Low-order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lamé coefficient λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }$$\end{document}, and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Chen, Long
Hu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, LMAM, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Hu, Jun
Huang, Xuehai
论文数: 0引用数: 0
h-index: 0
机构:
Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Peking Univ, LMAM, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, LMAM, Beijing 100871, Peoples R China
Hu, Jun
Schedensack, Mira
论文数: 0引用数: 0
h-index: 0
机构:
Univ Munster, Inst Numer & Angew Math, Einsteinstr 62, D-48149 Munster, GermanyPeking Univ, LMAM, Beijing 100871, Peoples R China