F-theory and AdS3/CFT2 (2, 0)

被引:0
|
作者
Christopher Couzens
Dario Martelli
Sakura Schäfer-Nameki
机构
[1] King’s College London,Department of Mathematics
[2] University of Oxford,Mathematical Institute
关键词
AdS-CFT Correspondence; F-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=02\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,2\right) $$\end{document} supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y8τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{Y}}_8^{\tau } $$\end{document}, which is elliptically fibered over a base ℳ˜6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_6 $$\end{document}. We construct two classes of solutions given in terms of a product ansatz ℳ6˜=Σ×M4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{{\mathrm{\mathcal{M}}}_6}=\varSigma \times {\mathrm{M}}_4 $$\end{document}, where Σ is a complex curve and ℳ˜4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_4 $$\end{document} is locally a Kähler surface. In the first class ℳ˜4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\mathrm{\mathcal{M}}}}_4 $$\end{document} is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ5τ, dual to 2d (0, 2) SCFTs, and AdS3 × S3/Γ × CY3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,2\right) $$\end{document} supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SCFTs.
引用
收藏
相关论文
共 50 条
  • [11] Weyl groups in AdS3/CFT2
    Fukuma, M
    Oota, T
    Tanaka, H
    PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (02): : 447 - 462
  • [12] Deriving the AdS3/CFT2 correspondence
    Lorenz Eberhardt
    Matthias R. Gaberdiel
    Rajesh Gopakumar
    Journal of High Energy Physics, 2020
  • [13] Worldsheet correlators in AdS3/CFT2
    Gaberdiel, Matthias R.
    Kirsch, Ingo
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [14] Topological Complexity in AdS3/CFT2
    Abt, Raimond
    Erdmenger, Johanna
    Hinrichsen, Haye
    Melby-Thompson, Charles M.
    Meyer, Rene
    Northe, Christian
    Reyes, Ignacio A.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06):
  • [15] BPS correlators for AdS3/CFT2
    Gaberdiel, Matthias R.
    Nairz, Beat
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [16] Fake gaps in AdS3/CFT2
    Alexandre Belin
    Alejandra Castro
    Ling-Yan Hung
    Journal of High Energy Physics, 2015
  • [17] Spectral flow in AdS3/CFT2
    Giribet, Gaston
    Pakman, Ari
    Rastelli, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06):
  • [18] Perturbations and supersymmetries in AdS3/CFT2
    Nishimura, M
    Tanii, Y
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 103 - 120
  • [19] Integrability and the AdS3/CFT2 correspondence
    Babichenko, A.
    Stefanski, B., Jr.
    Zarembo, K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (03):
  • [20] A defect in AdS3/CFT2 duality
    Emil J. Martinec
    Journal of High Energy Physics, 2022