Positive solutions of boundary value problems for second-order singular nonlinear differential equations

被引:1
作者
Li Ren-gui
Liu Li-shan
机构
[1] Qufu Normal University,Department of Mathematics
关键词
second-order singular boundary value problems; positive solutions; cone; fixed point; O175.8;
D O I
10.1007/BF02438315
中图分类号
学科分类号
摘要
New existence results are presented for the singular second-order nonlinear boundary value problems u″+g(t)f(u)=0, 0<t<1, αu(0)−βu′(0)=0, γu(1)+δu′(1)=0 under the conditions 0≤f0+<M1, m1<f∞−≤∞ or 0≤f∞+<M1, m1<f0−≤∞, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} f_0^ + = \overline {\lim } _{u \to 0} f(u)/u, f_\infty ^ - = \underline {\lim } _{u \to \infty } f(u)/u, f_0^ - = \hfill \\ \underline {\lim } _{u \to 0} f(u)/u, f_\infty ^ + = \overline {\lim } _{u \to \infty } f(u)/u \hfill \\ \end{gathered} $$ \end{document}, g may be singular at t=0 and/or t=1. The proof uses a fixed point theorem in cone theory.
引用
收藏
页码:495 / 500
页数:5
相关论文
共 4 条
[1]  
Erbe L H(1994)On the existence of positive solutions of ordinary differential equations [J] Proc Amer Math Soc 120 743-748
[2]  
Hai-yan Wang(1998)Positive solutions of singular second-order boundary value problem[J] Acta Math Sinica 41 1225-1230
[3]  
Ru-yun Ma(1976)Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J] SIAM Rev 18 620-709
[4]  
Amann H(undefined)undefined undefined undefined undefined-undefined