H∞-calculus for the Stokes operator on unbounded domains

被引:0
|
作者
Peer Christian Kunstmann
机构
[1] Universität Karlsruhe,Institut für Analysis
来源
Archiv der Mathematik | 2008年 / 91卷
关键词
35Q30; 47A60; Stokes operator; -functional calculus; general unbounded domains; Helmholtz decomposition; fractional powers;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Stokes operator A on unbounded domains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb{R}}^{n}$$\end{document} of uniform C1,1-type. Recently, it has been shown by Farwig, Kozono and Sohr that – A generates an analytic semigroup in the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document}, 1 < q < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) \cap L^{2}(\Omega)$$\end{document} for q ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) + L^{2}(\Omega)$$\end{document} for q ∈ (1, 2). Moreover, it was shown that A has maximal Lp-regularity in these spaces for p ∈ (1,∞). In this paper we show that ɛ + A has a bounded H∞-calculus in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document} for all q ∈ (1, ∞) and ɛ > 0. This allows to identify domains of fractional powers of the Stokes operator.
引用
收藏
页码:178 / 186
页数:8
相关论文
共 50 条
  • [41] A note on the functional calculus for unbounded self-adjoint operators
    Fitzpatrick, Patrick M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (02) : 633 - 640
  • [42] A note on the functional calculus for unbounded self-adjoint operators
    Patrick M. Fitzpatrick
    Journal of Fixed Point Theory and Applications, 2013, 13 : 633 - 640
  • [43] FRACTIONAL POWERS OF HIGHER-ORDER VECTOR OPERATORS ON BOUNDED AND UNBOUNDED DOMAINS
    Baracco, Luca
    Colombo, Fabrizio
    Peloso, Marco M.
    Pinton, Stefano
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2022, 65 (04) : 912 - 937
  • [44] The Stokes Dirichlet-to-Neumann operator
    Denis, C.
    ter Elst, A. F. M.
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (02)
  • [45] On an interpolation inequality involving the Stokes operator
    Maremonti, Paolo
    MATHEMATICAL ANALYSIS IN FLUID MECHANICS: SELECTED RECENT RESULTS, 2018, 710 : 203 - 209
  • [46] Analyticity for the Stokes operator in Besov spaces
    Bae, HO
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (06) : 1061 - 1074
  • [47] Lower Bounds for Eigenvalues of the Stokes Operator
    Hu, Jun
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 1 - 18
  • [48] A note on the Stokes operator and its powers
    Guermond J.-L.
    Salgado A.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 241 - 250
  • [49] The holomorphic functional calculus approach to operator semigroups
    Batty, Charles
    Haase, Markus
    Mubeen, Junaid
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (1-2): : 289 - 323
  • [50] Functional calculus for the Ornstein-Uhlenbeck operator
    García-Cuerva, J
    Mauceri, G
    Meda, S
    Sjögren, P
    Torrea, JL
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 413 - 450