We consider the Stokes operator A on unbounded domains \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega \subseteq {\mathbb{R}}^{n}$$\end{document} of uniform C1,1-type. Recently, it has been shown by Farwig, Kozono and Sohr that – A generates an analytic semigroup in the spaces \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document}, 1 < q < ∞, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) \cap L^{2}(\Omega)$$\end{document} for q ≥ 2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) + L^{2}(\Omega)$$\end{document} for q ∈ (1, 2). Moreover, it was shown that A has maximal Lp-regularity in these spaces for p ∈ (1,∞). In this paper we show that ɛ + A has a bounded H∞-calculus in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document} for all q ∈ (1, ∞) and ɛ > 0. This allows to identify domains of fractional powers of the Stokes operator.