H∞-calculus for the Stokes operator on unbounded domains

被引:0
|
作者
Peer Christian Kunstmann
机构
[1] Universität Karlsruhe,Institut für Analysis
来源
Archiv der Mathematik | 2008年 / 91卷
关键词
35Q30; 47A60; Stokes operator; -functional calculus; general unbounded domains; Helmholtz decomposition; fractional powers;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Stokes operator A on unbounded domains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb{R}}^{n}$$\end{document} of uniform C1,1-type. Recently, it has been shown by Farwig, Kozono and Sohr that – A generates an analytic semigroup in the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document}, 1 < q < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) \cap L^{2}(\Omega)$$\end{document} for q ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega) = {L}^{q}(\Omega) + L^{2}(\Omega)$$\end{document} for q ∈ (1, 2). Moreover, it was shown that A has maximal Lp-regularity in these spaces for p ∈ (1,∞). In this paper we show that ɛ + A has a bounded H∞-calculus in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{L}^{q}(\Omega)$$\end{document} for all q ∈ (1, ∞) and ɛ > 0. This allows to identify domains of fractional powers of the Stokes operator.
引用
收藏
页码:178 / 186
页数:8
相关论文
共 50 条