Geometric Latent Dirichlet Allocation on a Matching Graph for Large-scale Image Datasets

被引:0
|
作者
James Philbin
Josef Sivic
Andrew Zisserman
机构
[1] University of Oxford,Visual Geometry Group, Department of Engineering Science
[2] (CNRS/ENS/INRIA UMR 8548),INRIA – Willow Project, Laboratoire d’Informatique de l’Ecole Normale Supérieure
来源
International Journal of Computer Vision | 2011年 / 95卷
关键词
Object discovery; Large-scale retrieval; Topic/generative models;
D O I
暂无
中图分类号
学科分类号
摘要
Given a large-scale collection of images our aim is to efficiently associate images which contain the same entity, for example a building or object, and to discover the significant entities. To achieve this, we introduce the Geometric Latent Dirichlet Allocation (gLDA) model for unsupervised discovery of particular objects in unordered image collections. This explicitly represents images as mixtures of particular objects or facades, and builds rich latent topic models which incorporate the identity and locations of visual words specific to the topic in a geometrically consistent way. Applying standard inference techniques to this model enables images likely to contain the same object to be probabilistically grouped and ranked.
引用
收藏
页码:138 / 153
页数:15
相关论文
共 50 条
  • [1] Geometric Latent Dirichlet Allocation on a Matching Graph for Large-scale Image Datasets
    Philbin, James
    Sivic, Josef
    Zisserman, Andrew
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 95 (02) : 138 - 153
  • [2] PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications
    Wang, Yi
    Bai, Hongjie
    Stanton, Matt
    Chen, Wen-Yen
    Chang, Edward Y.
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2009, 5564 : 301 - +
  • [3] Map Matching Algorithm for Large-scale Datasets
    Fiedler, David
    Cap, Michal
    Nykl, Jan
    Zilecky, Pavol
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 500 - 508
  • [4] Survey on large-scale graph pattern matching
    Yu, Jing
    Liu, Yanbing
    Zhang, Yu
    Liu, Mengya
    Tan, Jianlong
    Guo, Li
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (02): : 391 - 409
  • [5] Pairwise Geometric Matching for Large-scale Object Retrieval
    Li, Xinchao
    Larson, Martha
    Hanjalic, Alan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 5153 - 5161
  • [6] Towards Matching User Mobility Traces in Large-Scale Datasets
    Kondor, Daniel
    Hashemian, Behrooz
    de Montjoye, Yves-Alexandre
    Ratti, Carlo
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) : 714 - 726
  • [7] Exploring Large-scale Public Medical Image Datasets
    Oakden-Rayner, Luke
    ACADEMIC RADIOLOGY, 2020, 27 (01) : 106 - 112
  • [8] LARGE-SCALE DATASETS FOR GOING DEEPER IN IMAGE UNDERSTANDING
    Wu, Jiahong
    Zheng, He
    Zhao, Bo
    Li, Yixin
    Yan, Baoming
    Liang, Rui
    Wang, Wenjia
    Zhou, Shipei
    Lin, Guosen
    Fu, Yanwei
    Wang, Yizhou
    Wang, Yonggang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1480 - 1485
  • [9] Application of latent Dirichlet allocation and autoencoder to real estate datasets
    Gu, Runhe
    Lin, Luchun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [10] BiModal Latent Dirichlet Allocation for Text and Image
    Liao, Xiaofeng
    Jiang, Qingshan
    Zhang, Wei
    Zhang, Kai
    2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2014, : 736 - 739