A Path Integral Treatment of a System With Variable Mass

被引:0
作者
N. Bouchemla
L. Chetouani
机构
[1] Université Akli Mohand Oulhadj,Département de physique
[2] Université Frères Mentouri,Laboratoire (LPMPS)
来源
International Journal of Theoretical Physics | 2018年 / 57卷
关键词
Propagator; Path integral; Canonical transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The propagator related to a system described by an Hamiltonien having the symetric form Ĥ=141mx̂,tp̂2+p̂21mx̂,t+Vx̂,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat {H}=\frac {1}{4}\left (\frac {1}{m\left (\hat {x},t\right ) }\hat {p}^{2}+\hat {p}^{2}\frac {1}{m\left (\hat {x},t\right ) }\right ) +V\left (\hat {x},t\right )$\end{document}, is determined by using the path integral approach. As applications, two cases, where the mass and the potential are both dependent on time and position, are considered: a free particle with a variable massand a generalized oscillator.
引用
收藏
页码:3882 / 3901
页数:19
相关论文
共 22 条
[1]  
Dekker H(1981)undefined Phys. Rep. 80 1-undefined
[2]  
Lewis HR(1969)undefined J. Math. Phys. 10 1458-undefined
[3]  
Riesenfeld WB(1941)undefined Nuov. Cimento 18 393-undefined
[4]  
Caldirola P(1948)undefined Progress of Th. Phys. 3 440-undefined
[5]  
Kanai E(1931)undefined Phys. Rev. 38 815-undefined
[6]  
Bateman H(1977)undefined Trans New York Academy Sci 38 44-undefined
[7]  
Feshbach H(2004)undefined Ann. of Phys. 354 312-undefined
[8]  
Tikochinsky Y(1989)undefined Phys. Rev. A 40 1157-undefined
[9]  
Blasone M(2009)undefined L. Chetouani Acta Phys. Polon. B 40 2711-undefined
[10]  
Jizba P(1981)undefined Lett. Nuov. Cimento 31 298-undefined