TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation and long range spin chains

被引:0
作者
Balázs Pozsgay
Yunfeng Jiang
Gábor Takács
机构
[1] Budapest University of Technology and Economics,MTA
[2] CERN,BME Quantum Dynamics and Correlations Research Group, Department of Theoretical Physics
[3] Budapest University of Technology and Economics,Theoretical Physics Department
关键词
Integrable Field Theories; Lattice Integrable Models; Effective Field Theories;
D O I
10.1007/JHEP03(2020)092
中图分类号
学科分类号
摘要
We point out that two classes of deformations of integrable models, developed completely independently, have deep connections and share the same algebraic origin. One class includes the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation of 1+1 dimensional integrable quantum field theory and related solvable irrelevant deformations proposed recently. The other class is a specific type of long range integrable deformation of quantum spin chains introduced a decade ago, in the context of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory. We show that the detailed structures of the two deformations are formally identical and therefore share many features. Both deformations preserve integrability and lead to non-local deformed theories, resulting in a change of the corresponding factorized S-matrices. We also prove a factorisation formula for the expectation value of the operators which trigger the deformation on the lattice; similar results in quantum field theory play an essential role in the solvability of such deformations. We point out that the long range deformation is a natural counterpart of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation for integrable spin chains, and argue that this observation leads to interesting new avenues to explore.
引用
收藏
相关论文
共 63 条
  • [1] Smirnov FA(2017) × Nucl. Phys. B 915 363-undefined
  • [2] Zamolodchikov AB(1991) = 4 Nucl. Phys. B 358 524-undefined
  • [3] Zamolodchikov AB(2000)undefined Nucl. Phys. B 578 527-undefined
  • [4] Mussardo G(2017)undefined JHEP 09 136-undefined
  • [5] Simon P(2018)undefined JHEP 10 186-undefined
  • [6] Dubovsky S(2017)undefined JHEP 07 122-undefined
  • [7] Gorbenko V(2018)undefined JHEP 08 106-undefined
  • [8] Mirbabayi M(2019)undefined JHEP 01 086-undefined
  • [9] Cardy J(2018)undefined SciPost Phys. 5 048-undefined
  • [10] Giveon A(2019)undefined SciPost Phys. 7 043-undefined