Kolmogorov widths of weighted Sobolev classes on closed intervals

被引:0
作者
A. A. Vasil’eva
机构
[1] Moscow State University,
来源
Mathematical Notes | 2008年 / 84卷
关键词
Kolmogorov width; weighted Sobolev class; measurable function; the space L; Maiorov discretization; Riemann-Liouville operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we estimate the asymptotics of the Kolmogorov widths of weighted Sobolev classes in the metric of Lp. We establish the relationship between the width of the set W∞,g1 and the approximation of the antiderivative function g by piecewise constant functions.
引用
收藏
页码:631 / 635
页数:4
相关论文
共 15 条
[1]  
Makovoz Yu. I.(1972)On a method for estimation from below of diameters of sets in Banach spaces Mat. Sb. 87 136-142
[2]  
Tikhomirov V. M.(1960)Diameters of sets in functional spaces and the theory of best approximations Uspekhi Mat. Nauk 15 81-120
[3]  
Ismagilov R. S.(1974)Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials Uspekhi Mat. Nauk 29 161-178
[4]  
Kashin B. S.(1977)Diameters of some finite-dimensional sets and classes of smooth functions Izv. Akad. Nauk SSSR Ser. Mat. 41 334-351
[5]  
Maiorov V. E.(1975)Discretization of the problem of diameters Uspekhi Mat. Nauk 30 179-180
[6]  
Konovalov V. N.(2002)Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval Anal. Math. 28 251-278
[7]  
Leviatan D.(2006)Asymptotic estimates for the approximation and entropy numbers of the one-weight Riemann-Liouville operator Mat. Tr. 9 52-100
[8]  
Lomakina E. N.(1978)The approximation of classes of functions with several bounded derivatives by Fourier sums Mat. Zametki 23 197-212
[9]  
Stepanov V. D.(1983)Norms of stochastic matrices and diameters of finite-dimensional sets Mat. Sb. [Math. USSR-Sb.] 120 180-189
[10]  
Galeev É. M. M.(1989)Weighted inequalities of Hardy type Sibirsk. Mat. Zh. 30 13-22