Convergence of a Two-Stage Proximal Algorithm for the Equilibrium Problem in Hadamard Spaces

被引:0
作者
Ya. I. Vedel
G. V. Sandrakov
V. V. Semenov
L. M. Chabak
机构
[1] Taras Shevchenko National University of Kyiv,
[2] State University of Infrastructural Technologies,undefined
来源
Cybernetics and Systems Analysis | 2020年 / 56卷
关键词
Hadamard space; equilibrium problem; pseudo-monotonicity; two-stage algorithm; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
An iterative two-stage proximal algorithm for approximate solution of equilibrium problems in Hadamard spaces is considered. This algorithm is an analog of the already studied two-stage algorithm for equilibrium problems in a Hilbert space. For Lipschitz-type pseudo-monotone bifunctions, a theorem on the weak convergence of sequences generated by the algorithm is proved.
引用
收藏
页码:784 / 792
页数:8
相关论文
共 40 条
[1]  
Antipin AS(1997)Equilibrium programming: Proximal methods Comput. Math. Math. Phys. 37 1285-1296
[2]  
Combettes PL(2005)Equilibrium programming in Hilbert spaces J. Nonlinear Convex Anal. 6 117-136
[3]  
Hirstoaga SA(2008)Extragradient algorithms extended to equilibrium problems Optimization 57 749-776
[4]  
Quoc TD(2010)On the parallel proximal decomposition method for solving the problems of convex optimization J. Autom. Inform. Sci. 42 13-18
[5]  
Muu LD(2011)Low-cost modification of Korpelevich’s methods for monotone equilibrium problems Cybern. Syst. Analysis 47 631-639
[6]  
Hien NV(2012)Equilibrium problems in Hadamard manifolds J. of Mathem. Analysis and Applications 388 61-77
[7]  
Semenov VV(2019)Approximating solutions of equilibrium problems in Hadamard spaces Miskolc Mathematical Notes 20 281-297
[8]  
Lyashko SI(2004)Homogenization of variational inequalities for problems with regular obstacles Doklady Akademii Nauk 397 170-173
[9]  
Semenov VV(2005)Homogenization of variational inequalities for non-linear diffusion problems in perforated domains Izvestiya: Mathematics 69 1035-1059
[10]  
Voitova TA(1976)An extragradient method for finding saddle points and for other problems Matecon 12 747-756