Hyperstability of the general linear equation on restricted domains

被引:0
作者
D. Molaei
A. Najati
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2016年 / 149卷
关键词
primary 39B82; 39B62; secondary 47H14; 47H10; hyperstability; generalized Cauchy functional equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the hyperstability of the generalized Cauchy functional equation f(ax+by)=Af(x)+Bf(y)+C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(ax + by) = Af(x) + Bf(y) + C$$\end{document}on restricted domains. We show, under some assumptions, that a function satisfying the equation approximately must be actually a solution to it.
引用
收藏
页码:238 / 253
页数:15
相关论文
共 11 条
[1]  
Bahyrycz A.(2014)Hyperstability of the Jensen functional equation Acta Math. Hungar. 142 353-365
[2]  
Piszczek M.(1949)Approximately isometric and multiplicative transformations on continuous function rings Duke Math. J. 16 385-397
[3]  
Bourgin D. G.(2011)A fixed point approach to stability of functional equations Nonlinear Anal. 74 6728-6732
[4]  
Brzdęk J.(2015)Remark on stability of some inhomogeneous functional equations Aequat. Math. 89 83-96
[5]  
Chudziak J.(1941)On the stability of the linear functional equation Proc. Natl. Acad. Sci. USA. 27 222-224
[6]  
Páles Zs.(2001)Hyperstability of a class of linear functional equations Acta Math. Acad. Paedagog. Nyházi. 17 107-112
[7]  
Brzdęk J.(2014)Remark on hyperstability of the general linear equation Aequat. Math. 88 163-168
[8]  
Hyers D. H.(undefined)undefined undefined undefined undefined-undefined
[9]  
Maksa Gy.(undefined)undefined undefined undefined undefined-undefined
[10]  
Páles Zs.(undefined)undefined undefined undefined undefined-undefined