Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces

被引:0
作者
Qian Zhang
Yehua Zhang
机构
[1] Hebei University,Hebei Key Laboratory of Machine Learning and Computational Intelligence, School of Mathematics and Information Science
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2020年 / 69卷
关键词
Quasi-geostrophic equations; Besov–Lorentz spaces; Local well-posedness; Blow-up criterion; 76W05; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the local well-posedness for the quasi-geostrophic equations and obtain a blow-up criterion of smooth solutions in the Besov–Lorentz spaces.
引用
收藏
页码:53 / 70
页数:17
相关论文
共 56 条
[1]  
Abidi H(2008)On the global well-posedness of the critical quasi-geostrophic equation SIAM J. Math. Anal. 40 167-185
[2]  
Hmidi T(2010)Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. Math. 171 1903-1930
[3]  
Caffarelli L(2009)Incompressible flow in porous media with fractional diffusion Nonlinearity 22 1791-1815
[4]  
Vasseur A(2002)On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces Commun. Pure Appl. Math. 55 654-678
[5]  
Castro A(2003)The quasi-geostrophic equation in the Triebel–Lizorkin spaces Nonlinearity 16 479-495
[6]  
Cordoba D(2007)A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation Commun. Math. Phys. 271 821-838
[7]  
Gancedo F(2010)On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces Arch. Ration. Mech. Anal. 195 561-578
[8]  
Orive R(1994)Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar Nonlinearity 7 1495-1533
[9]  
Chae D(1994)Singular front formation in a model for quasigeostrophic flow Phys. Fluids 6 9-11
[10]  
Chae D(1999)Behaviour of solutions of 2D quasi-geostrophic equations SIAM J. Math. Anal. 30 937-948