Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
来源
Mathematical Methods of Operations Research | 2021年 / 94卷
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [21] Convexity properties for interior operator games
    Bilbao, J. M.
    Chacon, C.
    Jimenez-Losada, A.
    Lebron, E.
    ANNALS OF OPERATIONS RESEARCH, 2008, 158 (01) : 117 - 131
  • [22] Convexity properties for interior operator games
    J. M. Bilbao
    C. Chacón
    A. Jiménez-Losada
    E. Lebrón
    Annals of Operations Research, 2008, 158 : 117 - 131
  • [24] Evolutionary Dynamics of Partition Games
    Bocharov, Pavel
    Goryashko, Alexander
    2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP), 2015, : 225 - 228
  • [25] On the convexity of step out–step in sequencing games
    M. Musegaas
    P. E. M. Borm
    M. Quant
    TOP, 2018, 26 : 68 - 109
  • [26] Characterizing convexity of games using marginal vectors
    van Velzen, B
    Hamers, H
    Norde, H
    DISCRETE APPLIED MATHEMATICS, 2004, 143 (1-3) : 298 - 306
  • [27] Convexity of oligopoly games without transferable technologies
    Driessen, TSH
    Meinhardt, HI
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (01) : 102 - 126
  • [28] Consumer Flexibility Aggregation Using Partition Function Games With Non-Transferable Utility
    Pinto, Tiago
    Wooldridge, Michael
    Vale, Zita
    IEEE ACCESS, 2021, 9 (09): : 51519 - 51535
  • [29] Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach
    Csercsik, David
    Koczy, Laszlo A.
    NETWORKS & SPATIAL ECONOMICS, 2017, 17 (04) : 1161 - 1184
  • [30] Methods for comparison of coalition influence on games in characteristic function form and their interrelationships
    Kojima, Kentaro
    Inohara, Takehiro
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 4047 - 4050