Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
来源
Mathematical Methods of Operations Research | 2021年 / 94卷
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [1] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121
  • [2] A recursive core for partition function form games
    László Á. Kóczy
    Theory and Decision, 2007, 63 : 41 - 51
  • [3] A recursive core for partition function form games
    Koczy, Laszlo A.
    THEORY AND DECISION, 2007, 63 (01) : 41 - 51
  • [4] The recursive nucleolus for partition function form games
    Yang, Guangjing
    Sun, Hao
    JOURNAL OF MATHEMATICAL ECONOMICS, 2023, 104
  • [5] A coalition formation value for games in partition function form
    Grabisch, Michel
    Funaki, Yukihiko
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 175 - 185
  • [6] Efficiency and the core in NTU games in partition function form
    Bimonte, Giovanna
    Senatore, Luigi
    Tramontano, Salvatore
    ANNALS OF OPERATIONS RESEARCH, 2024,
  • [7] Linear-State Differential Games in Partition Function Form
    Hoof, Simon
    INTERNATIONAL GAME THEORY REVIEW, 2019, 21 (04)
  • [8] Convexity and the Shapley value of Bertrand oligopoly TU-games in β-characteristic function form
    Hou, Dongshuang
    Lardon, Aymeric
    Driessen, Theo
    THEORY AND DECISION, 2025,
  • [9] On the convexity of newsvendor games
    Oezen, Ulas
    Norde, Henk
    Slikker, Marco
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2011, 133 (01) : 35 - 42
  • [10] On convexity in cooperative games with externalities
    J. M. Alonso-Meijide
    M. Álvarez-Mozos
    M. G. Fiestras-Janeiro
    A. Jiménez-Losada
    Economic Theory, 2022, 74 : 265 - 292