The distribution of the number of points modulo an integer on elliptic curves over finite fields

被引:0
作者
Wouter Castryck
Hendrik Hubrechts
机构
[1] Katholieke Universiteit Leuven,Departement Wiskunde
来源
The Ramanujan Journal | 2013年 / 30卷
关键词
Elliptic curves; Finite fields; Frobenius statistics; Modular curves; 14H52; 14K10;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document} be a finite field, and let b and N be integers. We prove explicit estimates for the probability that the number of rational points on a randomly chosen elliptic curve E over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document} equals b modulo N. The underlying tool is an equidistribution result on the action of Frobenius on the N-torsion subgroup of E. Our results subsume and extend previous work by Achter and Gekeler.
引用
收藏
页码:223 / 242
页数:19
相关论文
共 21 条
[1]  
Achter J.(2006)The distribution of class groups of function fields J. Pure Appl. Algebra 204 316-333
[2]  
Achter J.(2008)On the probability of having rational Arch. Math. 90 511-519
[3]  
Sadornil D.(1968)-isogenies J. Lond. Math. Soc. 43 57-60
[4]  
Birch B.(2012)How the number of points of an elliptic curve over a fixed prime field varies Proc. Lond. Math. Soc. 104 1235-1270
[5]  
Castryck W.(1997)The probability that the number of points on the Jacobian of a genus 2 curve is prime Duke Math. J. 87 151-180
[6]  
Folsom A.(1980)The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy Publ. Math. IHES 52 137-252
[7]  
Hubrechts H.(2000)La conjecture de Weil: II J. Lond. Math. Soc. 62 671-684
[8]  
Sutherland A.V.(2003)The probability that the number of points on an elliptic curve over a finite field is prime Int. Math. Res. Not. 37 1999-2018
[9]  
Chavdarov N.(2006)Frobenius distributions of elliptic curves over finite prime fields Doc. Math. 11 119-142
[10]  
Deligne P.(2008)The distribution of group structures on elliptic curves over finite prime fields Manuscr. Math. 127 55-67