Commutative BCK-Algebras and Quantum Structures

被引:4
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Positive Cone; Quantum Structure;
D O I
10.1023/A:1003689821470
中图分类号
学科分类号
摘要
We study commutative BCK-algebras with the relative cancellation property, i.e.,if a ≤ x, y and x * a = y * a, then x = y. Such algebras generalize Booleanrings as well as Boolean D-posets (= MV-algebras). We show that any suchBCK-algebra X can be embedded into the positive cone of an Abelianlattice-ordered group. Moreover, this group can be chosen to be a universal group forX. We compare BCK-algebras with the relative cancellation property with knownquantum structures as posets with difference, D-posets, orthoalgebras, andquantum MV-algebras, and we show that in many cases we obtain MV-algebras.
引用
收藏
页码:633 / 664
页数:31
相关论文
共 28 条
[1]  
Bennett M. K.(1998)A generalized Sasaki projection for effect algebras Tatra Mt. Math. Publ. 15 55-56
[2]  
Foulis D. J.(1936)The logic of quantum mechanics Ann. Math. 37 823-834
[3]  
Birkhoff G.(1958)Algebraic analysis of many valued logics Trans. Am. Math. Soc. 88 467-490
[4]  
von Neumann J.(1959)A new proof of the completeness of the ?ukasiewicz axioms Trans. Am. Math. Soc. 93 74-80
[5]  
Chang C. C.(1997)Boolean D-posets Tatra Mt. Math. Publ. 10 183-197
[6]  
Chang C. C.(2000)On categorical equivalence of BCK-algebras Studia Logica 64 21-36
[7]  
Chovanec F.(1999)Commutative BCK-algebras and lattice ordered groups Math. Japonica 49 159-174
[8]  
Kôpka F.(1998)Connections between BCK-algebras and difference posets Studia Logica 60 421-439
[9]  
Dvure?enskij A.(1994)Effect algebras and unsharp quantum logics Found. Phys. 24 1331-1352
[10]  
Dvure?enskij A.(1972)Operational statistics. I. Basic concepts J. Math. Phys. 13 1667-1675